MAINFRAME CRYPTO

Unscrambling the Complexity of Crypto!

Securing Your Crypto Infrastructure Greg Boyd (gregboyd@mainframecrypto.com)

June 2018

Copyrights and Trademarks

- Copyright © 2018 Greg Boyd, Mainframe Crypto, LLC. All rights reserved.
- All trademarks, trade names, service marks and logos referenced herein belong to their respective companies. IBM, System z, z Systems, zEnterprise and z/OS are trademarks of International Business Machines Corporation in the United States, other countries, or both. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.
- THIS PRESENTATION IS FOR YOUR INFORMATIONAL PURPOSES ONLY. Greg Boyd and Mainframe Crypto, LLC assumes no responsibility for the accuracy or completeness of the information. TO THE EXTENT PERMITTED BY APPLICABLE LAW, THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. In no event will Greg Boyd or Mainframe Crypto, LLC be liable for any loss or damage, direct or indirect, in connection with this presentation, including, without limitation, lost profits, lost investment, business interruption, goodwill, or lost data, even if expressly advised in advance of the possibility of such damages.

Agenda

- Securing crypto datasets (keystores, libraries)
- Securing ISPF Access
- ICSF Options (that impact security)
- Securing crypto resources
 - Keys
 - Services
 - ICSF Panels
 - APIs
 - Key Generation Utility Program
 - XCSFKEYS (secondary keys)
 - CRYPTOZ (PKCS #11 Tokens)
- Keystore policies (XFACILIT Class)
- A couple more XFACILIT Class profiles
- Operator commands
- Securing master key parts

MAINER

Unscrambling the Complexity of Crypto!

Key Repositories

- Cryptographic Key Data Set (CKDS)
 - Symmetric keys (AES, DES/TDES)
- PKA Key Data Set (PKDS)
 - PKA Keys (RSA, ECC)
 - Trusted PIN Blocks
- Token Key Data Set (TKDS)
 - Cryptographic Objects (AES, DES/TDES, ECC, RSA keys, all in a PKCS #11 format/architecture)

Secure the archives & backups too!

Page 4

zExchange Securing Your Crypto Infrastructure

Unscrambling the Complexity of Crypto!

MAINFRAME

Page 5

 \bigcirc

ADD TYPE(CLRAES), KEY(0123456789ABCDEF,0123456789ABCDEF, 0123456789ABCDEF, 0123456789ABCDEF), LAB(BOYDG.CLRAES.KEYVAL)

MFC System	X
QWS3270 <u>E</u> dit <u>V</u> iew <u>O</u> ptions <u>T</u> ools <u>H</u> elp	
₂ ₅₂ ₅ ₅ ₅ ⊨ í⊠ ₃ ∦ □ î = ∞ ↓ ♀ ↓ ♀ ♀ ↓ \$1 \$2 \$3 ₴ №	
. <u>M</u> enu <u>U</u> tilities <u>C</u> ompilers <u>H</u> elp .	
BROWSE SYS16180.T103501.RA000.BOYDG.R0100283 Line 000000081 Col 001 116 . Command ===>	
1000000 C2D6E8C4 C74BC3D3 D9C1C5E2 4BD2C5E8 E5C1D340 40404040 40404040 40404040 *BOYDG.CLRAES.KEYVAL * 000020 404040404 40404040 40404040 40404040 40404040 40404040 * <	
. 000140 00000002 0000000 000000002	
. 000000 C2D6E8C4 C74BC3D3 D9C1C5E2 4BD9C1D5 C4D6D440 40404040 40404040 *BOYDG.CLRAES.RANDOM . . 000020 40404040 40404040 40404040 40404040 40404040 40404040 *BOYDG.CLRAES.RANDOM . . 000040 C4C1E3C1 40404040 F2F0F1F6 F0F6F2F8 F1F0F3F4 F3F8F0F5 0000000 00000000 *DATA 2016062810343805 . . 000080 00000000 00000000 00000000 00000000 00000000 00000000 *< .	
0000A0 00000000 00000000 00000000 00000000 00000000 * * 0000C0 00000000 00000000 00000000 00000000 00000000 * * 0000E0 00000000 00000000 00000000 00000000 00000000 * * * 000100 2951E78A 2E573961 86E76368 01000000 040000F4 00000000 00000000 9B4E52E4 * * . . .	
Connected to mysystem.com port 3270 4/23 10:35:32 IBM-3279-5-E - TCPS	151

June 2018

zExchange Securing Your Crypto Infrastructure

Protect the ICSF Datasets

- CSFCLIO CLISTS
- CSFHDRS Header File for C
- CSFMOD0 Load Modules (APF Authorized)
- CSFMOD1 Load Modules
- CSFMSG0 ISPF Panel Messages
- CSFOBJ Data (for compiling and link editing)
- CSFPNLO Panel Library
- CSFSKLO ISPF Skeletons
- CSFSTUB Callable Services Stubs
- CSFTLIB Tables

ISPF Access

Do you want everyone to be able to access the ICSF panels? Probably not ...

- Allocate ICSF ISPF Libraries
 - Via TSO Logon PROC
 - Via REXX EXEC/CLIST and LIBDEF
- Invoke ICSF
 - Panel option on menu
 - Via REXX EXEC/CLIST

CSFSERV – Protect panels and utilities

Service	Description	Service	Description
CSFBRCK	CKDS Browser	CSFPMCI	Pass phrase master key/KDS initialization (TSO panel) utility
CSFCMK	Change master key (TSO panel) utility	CSFREFR	Refresh CKDS (TSO panel) utility
CSFCRC	Coordinated KDS Administration	CSFRENC	Reencipher CKDS (TSO panel) utility
CSFDKCS	Master key entry (TSO panel)	CSFRSWS	Administrative control functions (TSO panel) utility (ENABLE)
CSFGKF	Generate key fingerprint	CSFRWP	CKDS Conversion2 – rewrap option
CSFKGUP	Key Generation Utility Program	CSFSMK	Set master key utility
CSFOPKL	Operational key load	CSFSSWS	Administrative control functions (TSO panel) utility (DISABLE)
CSFPCAD	Cryptographic processors management (activate/deactivate)	CSFUDM	User Defined Extensions (UDX) management functions
CSFPKDR	PKDS reencipher and PKDS activate (TSO panel) utilities		

ICSF Options

June 2018

- SSM(YES/NO) Special Secure Mode
- CHECKAUTH(YES/NO) Bypass SAF checks for supervisor state/system key callers
- FIPSMODE(YES/NO/COMPAT, FAIL(YES/NO))
 - YES Enforces FIPS 140-2 modes for PKCS #11 APIs
 - COMPAT Enforces FIPS 140-2 modes for PKCS #11 APIs based on FIPSEXEMPT.token_name
 - No profile or profile exists but caller has access NONE FIPS algorithms and keysizes are enforced
 - Profile exists, caller has access READ (or higher) FIPS algorithms and keysizes are not enforced
 - NO- FIPS 140-2 modes are not enforced
 - If running YES or COMPAT, then the FAIL option controls whether ICSF will stop if a FIPS environment can not be established
 - FAIL(YES) Stop ICSF because it can't guarantee that a weak algorithm won't be used
 - FAIL(NO) Allow ICSF to come up and do work, but some apps might fail if weak
 algorithms or keys are used, depending on the reason the FIPS environment could
 not be established

(C) MAINER

Protecting ICSF Resources

- CSFKEYS Class controls access to CCA cryptographic keys
- CSFSERV Class controls access to
 - CCA and PKCS #11 services
 - ICSF TSO panel utilities
 - KGUP
- XCSFKEY Class controls authorization checks when symmetric key export services are used
- XFACILIT Class to implement key store policies
- CRYPTOZ Class controls access to and defines policy for crypto info within PKCS #11 tokens

CSFKEYS - Key Labels

- ICSF Key label
 - 64 byte character string, left justified, right padded with blanks
 - 1st character alphabetic or national (#, \$, @)
 - The rest can be alphabetic, national or period (.)
 - All alphabetic are upper case
- Bad Examples
 - THISISAREALLYLONGKEYLABEL
 - MYKEY
 - X
- Good Examples
 - hlq.application.algorithm.date
 - PROD.APPX.AES56 .D180321
 - hlq.application.subsys.date.identifier.cycle
 - BOYDG. APPX.DB2.D180316. PAYROLL.V1

CSFKEYS Access

- RDEFINE CSFKEYS ** UACC(NONE)
- RDEFINE CSFKEYS PROD.* UACC(NONE)
- RDEFINE CSFKEYS PROD.APPX.DB2.*.PAYROLL.* UACC(NONE)
- PERMIT PROD.APPX.DB2.*.PAYROLL.* CLASS(CSFKEYS) ID(user) ACCESS(READ)
- RDEFINE CSFKEYS PROD.*.*.PE UACC(NONE)
- PERMIT PROD.*.*.PE CLASS(CSFKEYS) ID(groupid) ACCESS(READ) WHEN(CRITERIA(SMS(DSNENCRYPTION)))

Page 12

Grouping Class

- GCSFKEYS Resource Group Class for the CSFKEYS class
- GXCSFKEY Resource Group Class for the XCSFKEY Class

Protected Key

 RALTER CSFKEYS PROD.APPX.DB2.*.PAYROLL.* ICSF(SYMCPACFWRAP(YES))

Protected Key (for Pervasive Encryption)

 RALTER CSFKEYS PROD.*.*.PE ICSF(SYMCPACFWRAP(YES) SYMCPACFRET(YES))

CSFSERV – Protecting ICSF APIs and functions

Resource Name	Callable Service Name	Callable Service Description
CSFENC	CSNBENC CSNEENC	Encipher
CSFDEC	CSNBDEC CSNEDEC	Decipher
CSFKGN	CSNBKGN CSNEKGN	Key Generate
CSFKGN2	CSNBKGN2 CSNEKGN2	Key Generate2
CSFPKRW	CSNDKRW CSNFKRW	PKDS Record Write
CSF1HMG	CSFPHMG CSFPHMG6	PKCS #11 Generate MAC
CSFIQF	CSFIQF CSFIQF6	ICSF Query Facility

See the ICSF Admin Guide, SC14-7506

zExchange Securing Your Crypto Infrastructure

CSFSERV – Protect panels and utilities

Service	Description	Service	Description
CSFBRCK	CKDS Browser	CSFPMCI	Pass phrase master key/KDS initialization (TSO panel) utility
CSFCMK	Change master key (TSO panel) utility	CSFREFR	Refresh CKDS (TSO panel) utility
CSFCRC	Coordinated KDS Administration	CSFRENC	Reencipher CKDS (TSO panel) utility
CSFDKCS	Master key entry (TSO panel)	CSFRSWS	Administrative control functions (TSO panel) utility (ENABLE)
CSFGKF	Generate key fingerprint	CSFRWP	CKDS Conversion2 – rewrap option
CSFKGUP	Key Generation Utility Program	CSFSMK	Set master key utility
CSFOPKL	Operational key load	CSFSSWS	Administrative control functions (TSO panel) utility (DISABLE)
CSFPCAD	Cryptographic processors management (activate/deactivate)	CSFUDM	User Defined Extensions (UDX) management functions
CSFPKDR	PKDS reencipher and PKDS activate (TSO panel) utilities		

RACF CSFSERV Profiles

- RDEFINE CSFSERV ** UACC(NONE) or RDEFINE CSFSERV CSF* UACC(NONE)
 NOTE: New to ICSF do this now! If ICSF is already active, be careful!
- RDEFINE CSFSERV CSFCMK UACC(NONE)
- PERMIT CSFSERV CSFCMK ID(icsf admin userid or groupid) ACCESS(READ)

RACF CSFSERV Profiles (cont.)

- RDEFINE CSFSERV CSFKGN* UACC(NONE)
- PERMIT CSFSERV CSFKGN* ID(operational key officers group) ACCESS(READ)
 - Protects CSNBKGN and CSNBKGN2
- RDEFINE CSFSERV CSFSA* UACC(NONE)
- PERMIT CSFSERV CSFSA* ID(prod id) ACCESS(READ)
 - Protects CSNBSAD, CSNBSAD1, CSNBSAE and CSNBSAE1,

CSFSERV Access

- RACF
 - DEFINE CSFSERV * UACC(NONE)
 - RDEFINE CSFSERV service UACC(NONE)
 - PERMIT service CLASS(CSFSERV) ID(userid) ACCESS(READ)
- CA Top Secret
 - TSS ADD(owner) CSFSERV(service)
 - TSS PERMIT(userid/profile) CSFSERV(service) ACCESS(READ)
- CA ACF2
 - SET RESOURCE(SAF)
 - COMPILE
 - \$KEY(service) TYPE(SAF) UID(userid) SERVICE(READ) ALLOW
 - STORE

CRYPTOZ Class – Users and Profiles

- PKCS #11 standard for systems that use PINs to grant access
- Two types of users
 - Standard User (user)
 - Access to private objects
 - Ability to change their own PIN
 - Security Officer (SO)
 - Can initialize a token
 - Set the User's PIN
 - Access public objects, but not private objects
- CRYPTOZ profile
 - USER.token-name controls access of the user to the token
 - SO.token-name controls access of the SO to the token

CRYPTOZ Class – Access Levels

- Three token access levels, defined by PKCS #11
 - User R/O allows user to read token, including private objects, but cannot create new token or session objects or alter existing
 - User R/W allows user read/write access to token objects, including private objects
 - SO R/W allows user to act as security officer for the token and to read, create and later public objects
- Three token access levels, defined by z/OS
 - Weak SO security officer can modify CA certificates contained in, but not initialize the token
 - Strong SO security officer can add, generate or remove private objects in a token
 - Weak User user that cannot change the trusted CAs in a token

Unscrambling the Complexity of Crypto!

CRYPTOZ Class – Token Access Levels

- Levels of Access
 - Read
 - Update
 - Control

CRYPTOZ resource	Read Access	Update Access	Control Access
SO.token-label	Weak SO (Can read, create, delete, modify and use public objects	SO R/W (Weak SO + create and delete tokens	Strong SO (SO R/W + read, but not use private objects; create, delete and modify private objects
USER.token-label	User R/O (Can read public and private objects	Weak User (User R/O + create, delete and modify private and public objects. Cannot add, delete or modify CA objects	User R/W (Weak User + add, delete and modify CA objects

Use means: Performing any crypto operating involving the key object; searching for key objects; retrieving sensitive key object attributes

Page 22

Key Store Policies – XFACILIT Class

By defining a policy, a security administrator can make symmetric and asymmetric keys more secure, without requiring application changes

- Key Token Authorization Checking
- Default Key Label Checking
- Duplicate Key Token Checking
- Granular Key Label Access Control
- Symmetric Key Label Export Control (aka CSNDSYX Export Control)
- PKA Key Management Extension Control
- Key Archive Use Control

ICSF Application Key Usage

• Some APIs can use

- Key ID label of a key
 - 64-byte (padded to right) label
 - Must exist in the keystore
 - Key record contains the key token
- Key token CCA Key token
 - 64-byte structure as defined by CCA
- Key material actual key material
 - Appropriate length

Key Token Authorization Checking

Q: When an API is passed a key token, instead of a key label, how does ICSF validate whether the user is permitted to that key? There is no key label to use to find the profile!

A: With this check enabled, ICSF will search for that key material in the keystore and use the label from that record to search for a RACF profile.

- CSF.CKDS.TOKEN.CHECK.LABEL.action
- CSF.PKDS.TOKEN.CHECK.LABEL.action
 - Action
 - Fail the use of the key token will fail
 - Warn the use of the key token is allowed and a warning message is generated

RDEFINE XFACILIT CSF.CKDS.TOKEN.CHECK.LABEL.WARN RDEFINE XFACILIT CSF.PKDS.TOKEN.CHECK.LABEL.WARN

Default Key Label Checking

Q: With the previous check enabled, what happens if there is no key record in the keystore that matches the token?

A: ICSF will permit the use of that key. However, you can override, by enabling Default Key Label Checking.

Provides a default key label and thus a default key label profile for SAF checks

- CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL
 - CSF-CKDS-DEFAULT
- CSF.PKDS.TOKEN.CHECK.DEFAULT.LABEL
 - CSF-PKDS-DEFAULT

RDEFINE CSFKEYS CSF-CKDS-DEFAULT UACC(NONE) RDEFINE XFACILIT CSF.CKDS.TOKEN.CHECK.DEFAULT.LABEL RDEFINE CSFKEYS CSF-PKDS-DEFAULT UACC(NONE) RDEFINE XFACILIT CSF.PKDS.TOKEN.CHECK.DEFAULT.LABEL

- ICSF does not require that key material be stored in the CKDS or PKDS.
- Enabling Key Token Authorization Checking plus Default Key Label Checking changes that behavior
 - Key Token Authorization Checking enforces that a copy of the key must be in the keystore
 - And Default Key Label Checking says there must be a label in the keystore that grants access

Duplicate Key Token Checking

Prohibit the defining of multiple copies of a key in the keystore

- CSF.CKDS.TOKEN.NODUPLICATES
 RDEFINE XFACILIT CSF.CKDS.TOKEN.NODUPLICATES
- CSF.PKDS.TOKEN.NODUPLICATES
 RDEFINE XFACILIT CSF.PKDS.TOKEN.NODUPLICATES

Enabling this security policy will not detect existing duplicate keys in the keystore

– use the CSFDUTIL utility to find dups

Granular Key Label Access Control

- By default, only READ authority to a key is needed to read from, create, write to, and delete a key (using the label)
- Granular Key Label Access Control increases the required authority
 - UPDATE authority required to create a key label
 - CONTROL authority required to update or delete a key
- CSF.CSFKEYS.AUTHORITY.LEVELS.WARN
 - A warning is issued as long as the user has read authority to the key label
- CSF.CSFKEYS.AUTHORITY.LEVELS.FAIL
 - The operation will fail unless the user has the appropriate authority above

RDEFINE XFACILIT CSF.CSFKEYS.AUTHORITY.LEVELS.WARN

PERMIT PE.AES256.KEY1 CLASS(CSFKEYS) ID(user) ACCESS(UPDATE) PERMIT PE.AES256.KEY1 CLASS(CSFKEYS) ID(user) ACCESS(CONTROL)

Using a key vs Exporting a key

- Consider a key
 - Used to encrypt data
 - But also needs to be exported
 - Some users should have authority to one operation, but not the other
- CSFKEYS Class grants authority to use the key
- XCSFKEY Class grants authority for other operations

SETROPTS CLASSACT(XCSFKEY) SETROPTS RACLIST(XCSFKEY)

CSNDSYX – export a key, under a transport key

- AES.PARTNER1.KEY1 DATA key used to encrypt data that will be shared with Partner1, and this key must be securely transported to Partner1
- RSA.PARTNER1.TRANSPA RSA key used to transport operational keys to Partner 1

CALL CSNDSYX(....

transporter_key_identifier=RSA.PARTNER1.TRANSPA
source_key_identifier=AES.PARTNER1.KEY1,)

- CSFKEYS RSA.PARTNER1.TRANSPA ACCESS(READ)
- CSFKEYS AES.PARTNER1.KEY1 ACCESS(READ)

Symmetric Key Label Export Control (aka CSNDSYX Export Control)

- CSF.XCSFKEY.ENABLE.AES RDEFINE XFACILIT CSF.XCSFKEY.ENABLE.AES
- CSF.XCSFKEY.ENABLE.DES
 RDEFINE XFACILIT CSF.XCSFKEY.ENABLE.DES

CALL CSNDSYX(....

transporter_key_identifier=RSA.PARTNER1.TRANSPA source_key_identifier=AES.PARTNER1.KEY1,)

- CSFKEYS RSA.PARTNER1.TRANSPA ACCESS(READ)
- XCSFKEYS AES.PARTNER1.KEY1 ACCESS(UPDATE)

PKA Key Management Extension Control (Part 1)

- CSF.PKAEXTNS.ENABLE.WARNONLY
- CSF.PKAEXTNS.ENABLE
- Determines if a symmetric key can be exported, and which asymmetric key can be used to wrap it
 - ICSF(SYMEXPORTABLE(BYNONE))
 - ICSF(SYMEXPORTABLE(BYLIST) SYMEXPORTKEYS(...))
 - ADDSYMEXPORTKEYS(...)
 - DELSYMEXPORTKEYS(...)
 - SYMEXPORTCERTS(...)
 - ICSF(SYMEXPORTABLE(BYANY) CSFKEYS or XCSFKEYS!

Note: Requires an active key store policy CSF.xKDS.TOKEN.CHECK.LABEL.action CSF.xKDS.TOKEN.NODUPLICATES

June 2018

zExchange Securing Your Crypto Infrastructure

PKA Key Management Extension Control (Part 2)

- CSF.PKAEXTNS.ENABLE.WARNONLY
- CSF.PKAEXTNS.ENABLE
- Determines how an asymmetric key can be used
 - ICSF(ASYMUSAGE(HANDSHAKE/NOHANDSHAKE))
 - ICSF(ASYMUSAGE(SECUREEXPORT/NOSECUREXPORT))
- By default ASYMUSAGE(HANDASHAKE SECUREEXPORT)

Key Archive Use Control

Security policy will allow an archived key to be used

• CSF.KDS.KEY.ARCHIVE.USE

RDEFINE XFACILIT CSF.KDS.KEY.ARCHIVE.USE

Key Store Policies – XFACILIT Class

- Key Token Authorization Checking¹
- Default Key Label Checking²
- Duplicate Key Token Checking¹
- Granular Key Label Access Control³
- Symmetric Key Label Export Control (aka CSNDSYX Export Control)³
- PKA Key Management Extension Control²
- Key Archive Use Control
- ¹Activates Key Store Policy
- ²Requires an active key store policy
- ³Does not require an active key store policy, unless you want to associate a key token with a label

A couple more in the XFACILIT class

- Dynamic SSM RDEFINE XFACILIT CSF.SSM.ENABLE
- Disable SAF checks for the hashing APIs DEFINE XFACILIT CSF.CSFSERV.AUTH.CSFOWH.DISABLE
- Disable SAF checks for the RNG APIs RDEFINE XFACILIT CSF.CSFSERV.AUTH.CSFRNG.DISABLE

Operator Commands

- SETICSF MVS.SETICSF profile
 - Activate/Deactivate/Restart or Check/Delete devices
 - Enable/Disable keystores
 - Change/Refresh some ICSF Options
- Display ICSF MVS.DISPLAY.ICSF profile
 - Information about available devices
 - Information about active keystores
 - Information about master key status
 - Information about members of the KDS Plex
 - Information about current options

RDEFINE OPERCMDS MVS.SETICSF UACC(NONE) PERMIT MVS.SETICSF CLASS(OPERCMDS) ID(lead oper) ACCESS(UPDATE) RDEFINE OPERCMDS MVS.DISPLAY.ICSF UACC(NONE) PERMIT MVS.DISPLAYICSF CLASS(OPERCMDS) ID(operator group) ACCESS(UPDATE)

Securing Master Key Parts

CSFMKV00 ------ ICSF – Checksum and Verification and Hash Pattern ------COMMAND ===>

Enter data below:

Key Type ===>

- Key Value ===> 02AC7633C1951F0A
 - ===> 5916A7A3DF8718DB
 - ===> 00000000000000
 - ===> 000000000000000
- Checksum Key Part VP

Key Part HP

- : DD
- : A7518C6F9C65FB02
- : D8C18ADC8F01E6D9
- : 307C31F4CC1CB2F2

(Selection panel displayed if blank) Input key value 1 Input key value 2 Input key value 3 (AES, ECC & RSA Keys) Input key value 4 (AES, ECC Keys only)

Check digit for key value Verification Pattern Hash pattern

Press ENTER to process. Press END to exit to the previous menu.

Trusted Key Entry Workstation

Express Coprocessor Trusted Key Entry Workstation

(0)

MAINER

Unscrambling the Complexity of Crypto!

ICSF Publications

- SC14-7505 ICSF Overview
- SC14-7506 ICSF Administrator's Guide
- SC14-7507 ICSF Systems Programmer's Guide
- SC14-7508 ICSF Application Programmer's Guide

Websites

• TechDocs (search on crypto)

http://www.ibm.com/support/techdocs TechDoc TD105748

'CSFSERV Class RACF Profiles for ICSF Panels'

June 2018

zExchange Securing Your Crypto Infrastructure

Page 41

Questions ...

zExchange Securing Your Crypto Infrastructure

MAINFRAME

 \bigcirc