

Let's Build a z Environment - 102 Session 23331 Tuesday, August 14 at 11:15-12:15 AM

STL CC, Room 242

Presented by Paul R. Robichaux NewEra Software, Inc.

Abstract – Let's Build a z Environment!

The two presentations in this series focus on the building of a z Environment – Hardware, Software, Security – with the goal of establishing a 'Trusted Computing Base'. A z/OS System that can provide the reliability needed to meet demanding service levels, integrity and security objectives. All are necessary to execute mission critical applications. This is Intended for those new to z Systems or just beginning their careers with organizations that capitalize on systems anchored to the power and reliability of the IBM Mainframe.

In – 101 – the focus will be on the platform, in this case a z14, hardware divisions of the Central Processing Complex (CEC), its various channel pathways and related devices that define a UCW (Unit Control Work), the front half of the z System Device Chain. This segment continues with the definition of an associated Operating System configuration, its various I/O devices and related features that define a UCB (Unit Control Block), the back half of the z System Device. Detailing both the Power-On and IPL process will join UCWs and UCBs to form a fully addressable device across which data (encrypted or not) may flow to and from the CEC.

In – 102 – the focus will shift to a discussion of Multiple Virtual Storage (MVS), what is z/OS, how to get it, install it, support it and upgrade/migrate from release to release. The elements of the IPL Path – IPLPARM, IRIMS, IODF, SYSRES – to name just a few will be examined in detail as will the Post-IPL environment – APFLST, LNKLST, LPALST, SVCs, EXITs, PPT. The integrity of the environment will be described within the context of the IBM Integrity Statement and the Authorized Program Facility (APF). The session ends with a discussion concerning system vulnerabilities, their potential impact and sources of possible remediation.

Paul R. Robichaux is CEO and co-founder of NewEra Software, Inc. He served as the Chief Financial Officer of Boole and Babbage for the ten years immediately preceding his co-founding of NewEra in 1990. He holds a BS in Accounting and a Masters in Business Administration from a Louisiana State University, is a Certified Public Accountant and a frequent speaker at industry events.

The corporate mission of NewEra Software is to provide software solutions that help users avoid z/OS non-compliance, make corrections when needed and in doing so, continuously improve z/OS integrity and Security.

Let's Build a System z Environment - 102

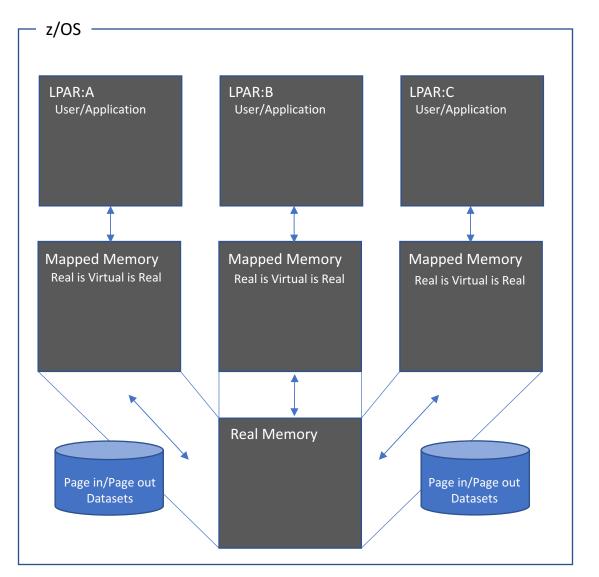
Sysplex with two z14s and a z14 (CF). A total of 30 LPARs - An average size z/OS shop.

Null Z14 Defining the z/14 Hardware	Load the z/OS Program A Running z/OS LPAR
When the System is at Rest - 101	When the System is in Flight – 102
 Why are we here? Alphabet, Words, Pictures & Rules The Mainframe Today Virtualization Physicalization Crafting a Partition Goals and Control Points Unpacking the Configuration 	 What is MVS? Delivery Migration On the IPL Path Post-IPL State z System Integrity Program Authorization System Vulnerabilities
9. Power-on-ResetA. Defining a z/OS Image	 9. Language Index A. Recommended Reading/Viewing

Why are we here?

"The world is in the midst of a transformation that is having a profound effect on us as individuals, in business, and in society at large. As we adapt to capitalize on these trends, we must come to understand that trust will be the valued currency that will drive our economies."

1 - What is MVS?


Some History:

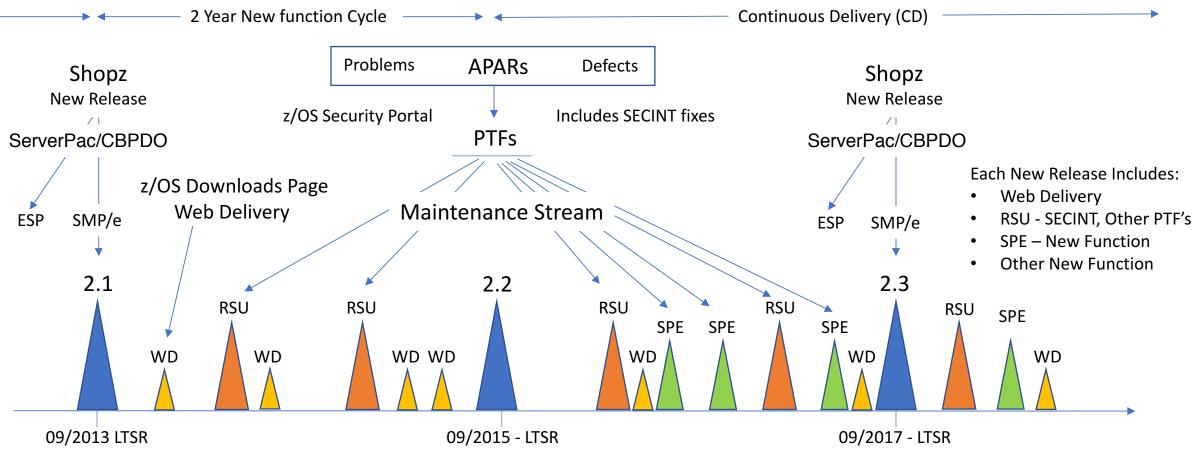
MVS (Multiple Virtual Storage) is an operating system from IBM that continues to run on many of IBM's mainframe and large server computers. MVS has been said to be the operating system that keeps the world going and the same could be said of its successor systems, OS/390 and z/OS. The payroll, accounts receivable, transaction processing, database management, and other programs critical to the world's largest businesses are usually run on an MVS or successor system. Although MVS has often been seen as a monolithic, centrally-controlled information system, IBM has in recent years repositioned it (and successor systems) as a "large server" in a network-oriented distributed environment.

The follow-on versions of MVS (z/OS, for example) no longer includes the "MVS" in its names.

2 - What is MVS?

Virtual Storage:

The Virtual Storage in MVS refers to the use of virtual memory in the operating system.


Virtual storage or memory allows a program to have access to the maximum amount of memory in a system even though this memory is actually being shared among more than one application program.

The operating system (z/OS) translates the program's virtual address into the real physical memory address where the data is actually located.

The Multiple in MVS indicates that a separate virtual memory is maintained in the mapped form within a Paged Dataset for each multiple task partition. These Pages are, in turn, called (Paged) in and out of Real Memory as needed.

2 - Delivery - How you get it

- APAR Authorized Program Analysis Report describes problem and is formally tracked until resolved
- RSU Recommended Service Update
- SPE Describes a New Function APAR
- PTF Program Temporary Fix When applied, resolves a related APAR FIX Package FIXPCK
- EOS End of Service
- LTSR Long-Term Support Release 2yrs Minimum, 1yr extension is optional at End of Service CD has a shorter support cycle
- ESP Early Support Program
- SECINT System Security and Integrity APARs/PTFs
- CBPDO Custom-Built Product Delivery Option

2 - Delivery - How you install it

About ServerPac

ServerPac - An entitled software delivery package consisting of products and services for which IBM[®] has performed the SMP/E installation steps and some post-SMP/E steps.

- A full system replacement installs a complete z/OS system. A full system replacement helps assure a successful first IPL.
- A software upgrade installs only system software and does not create the set of new operational data sets required to IPL.

About CBPDO

CBPDO - An entitled software delivery package consisting of uninstalled products and unintegrated service. There is no dialog program to help you install, as there is with ServerPac.

- Other than z/OS itself, CBPDO is useful to upgrade an existing product, or add a new product to an existing SMP/E environment.
- By contrast, the Product ServerPac is useful when creating a new SMP/E environment.

- About SMP/E

SMP/E is the basic tool for installing and maintaining z/OS[®] systems and subsystems. It controls changes at the element level by:

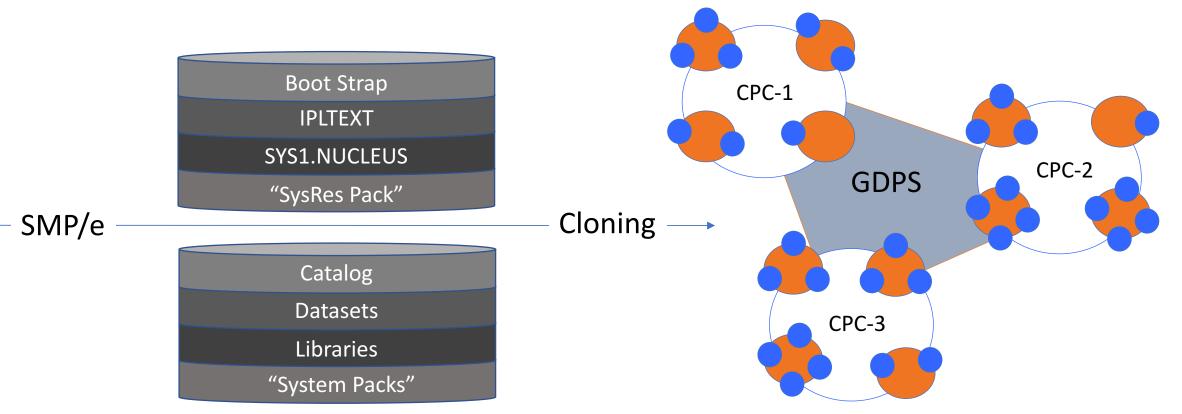
- Selecting the proper levels of elements to be installed (from a large number of possible changes),
- Calling required system utility programs to install the changes and
- Keeping records of the installed changes.

SMP/E is an integral part of the installation, service, and maintenance processes for CBPDOs, ProductPacs, RefreshPacs, and selective follow-on service for CustomPacs.

SMP/E can be used to install and service any software, including vendor software, that is packaged in SMP/E system modification (SYSMOD) format.

3 - Migration - Workflow

z/OSMF


Migration Actions Workflows: one or more XML Files zOS V2.3 Migration Workflow - GitHub

- Deploy exploits to other systems, sysplex, the enterprise.
- If no 'Fallback' to prior release, exploit features of New Release.
- Deploy z/OS Release to other systems, migration is now complete.
- Migration actions after first IPL of New z/OS Release Health Check.
- IPL new z/OS Release with updated configuration files
- Prepare target, Actions to perform before the first IPL of z/OS Release
- Order and install z/OS Release ServerPac or CBPDO
- Prepare the driving system.
- Order and install "Coexistence" and "Fallback" services for systems that will share resources.
- Migration actions on "old" z/OS Release before new z/OS Release IPL Health Check.
- Review the Documentation Links below and Workflow see GitHub.

IBM z/OS Migration (GA32-0889-30) IBM z/OS Introduction and Release Guide (GA32-0887-30) IBM z/OS Planning for Installation (GA32-0890-30) IBM z/OS Management Facility V2R3 - IBM Redbooks

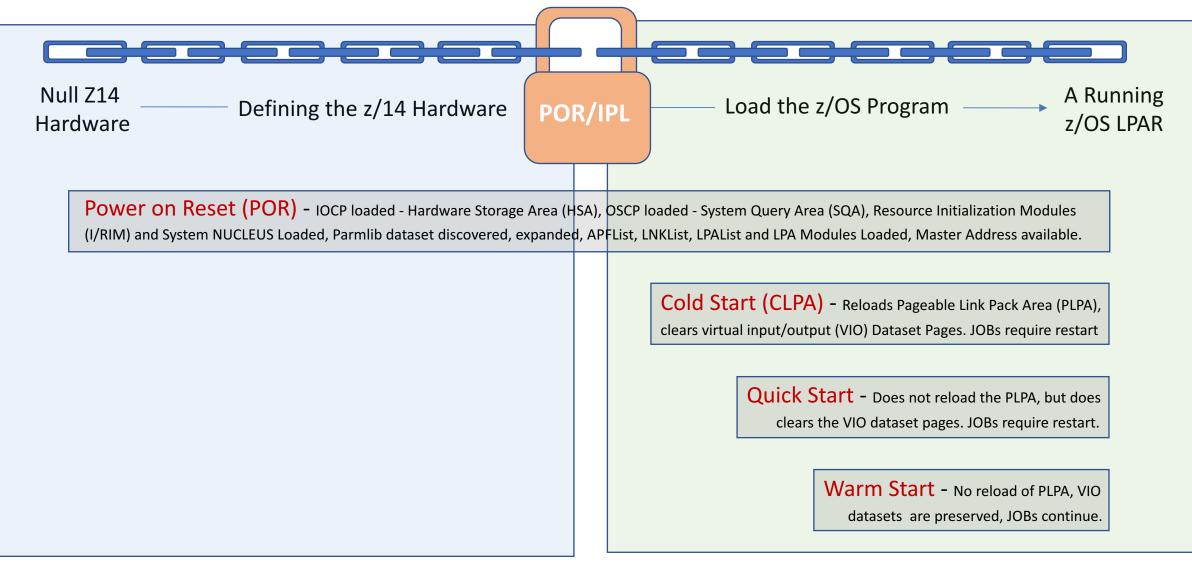
Cloning an already-installed z/OS system is faster and easier than installing z/OS with an IBM installation package such as ServerPac. Cloning system libraries (logical SYSRES volume) may also save DASD and support costs because you only need to install service once.

However, before cloning z/OS, you must have a license for each z/OS operating system that you run. If you do not have the appropriate license or licenses, any cloning is an unauthorized use of z/OS.

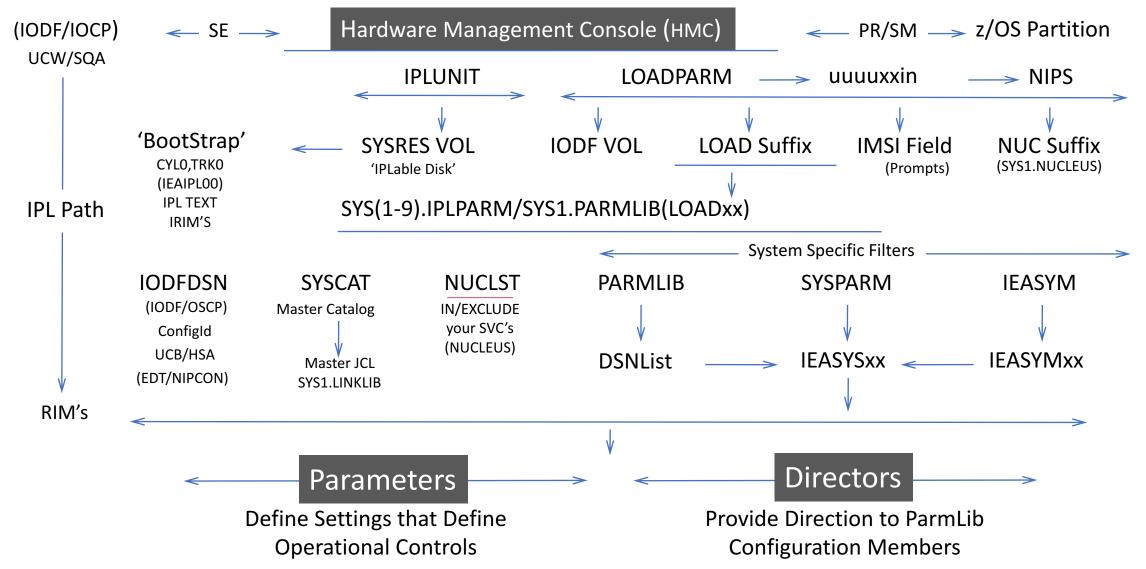
3 - Migration - Hardware

You'll have to run pretty hard just to keep up with it all!

			z14 Q3/2017 146,700 MIPS 2200
		2827-7A1 Q3/2012 78,426 MIPS 1188	
	z10 Q3/2009 31,900 MIPS 403		
2084-332 Q4/2003 9,060 MIPS 137			



9672-R61 / Q3/1994 66 MIPS


Source:http://www.tech-news.com/publib

~	Paramete	ers — — — — — — — — — — — — — — — — — — —	Directo	rs>
	CLPA	NSYSLX	ALLOC=xx,xx	IKJTSO=xx - Auth Cmds/Progs
	СМВ	OPI - See Below*	APF=xx	IOS=xx
	CSA	PAGE - Datasets	AUTOR=xx,xx	IQP=xx,xx
	CSCBLOC	PAGESCM	AXR=xx,xx	IZU=xx - z/OSMF
	CVIO	PAGTOTL	CATALOG=xx,xx	IXGCNF=xx,xx
	DRMODE	PLEXCFG	CEA=xx,xx	LNK=xx,xx - LNKLST
	DUMP	PRESCPU	CEE=xx,xx	LPA=xx,xx - LPALST
	GRS	RDE	CLOCK=xx,xx	MLPA=xx,xx
	HVCOMMON	REAL	CMD=xx,xx	MSTRJCL=xx
	HVSHARE	RER	CON=xx	OMVS=xx,xx
	HZSPROC	RSU	COUPLE=xx	OPT=xx
	LFAREA	RSVNONR	DEVSUP=xx,xx	PAK=xx
	LICENSE	RSVSTRT	DIAG=xx,xx	PROD=xx,xx
	lnkauth – Apf	SQA	EXIT=xx - Site	PROG=xx,xx - APF/LNKLST/LPAMOD
	LOGCLS	SYSNAME - Name	FIX=xx,xx	RACF=xx,xx - Db Configuration
	LOGLMT	SYSP	FXE=xx - Registry	SCH=xx,xx - PPTable
	LOGREC	VIODSN	GRSCNF=xx	SMF=xx,xx
	MAXCAD	VRREGN	GRSRNL=xx,xx	SMS=xx,xx
	MAXUSER	WARNUND	GTZ=xx,xx	SSI=xx,xx
	NONVIO	ZAAPZIIP	HZS=xx,xx	SVC=xx,xx - Site SVC Table
			IEFOPZ=xx,xx	SYSP=OPR, xx, xx

UNI=xx & VAL=xx,xx

*Directors and Parameters that can be placed in an IEASYSxx member or specified by the operator.

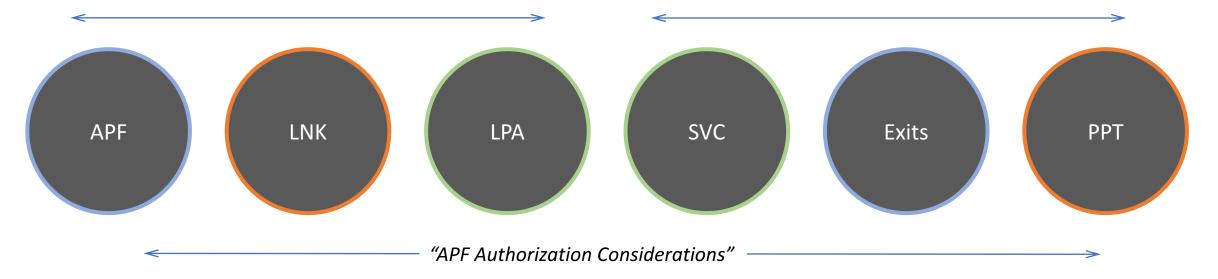
Overview of IEASYSxx parameters

Unit Address

LOADPARM

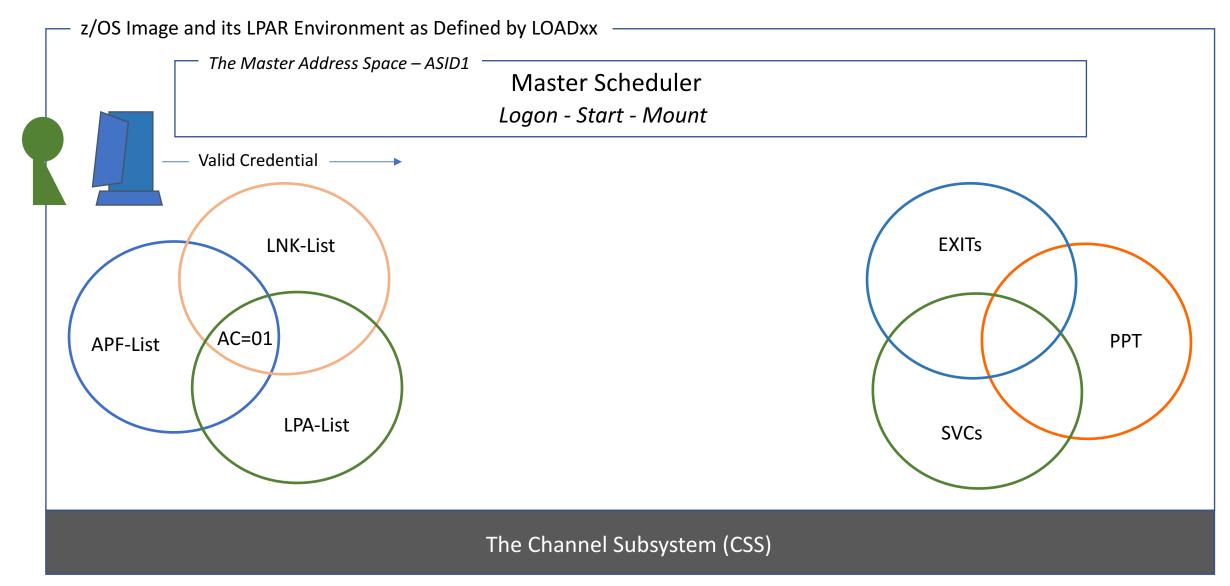
HWNAME h1 LPARNAME 11 VMUSERID v1 ARCHLVL a DYNCPADD { nnnn | ENABLE | DISABLE} IEASYM [xx] [(xx,yy,zz,...,L)] INITSQA xxxxK yyyyK xxxxM yyyyM IODF xx hiqualif configid id y s MACHMIG x1,x2,...,xn MTLSHARE {Y | N} NUCLEUS n NUCLST nn y PARMLIB dsn

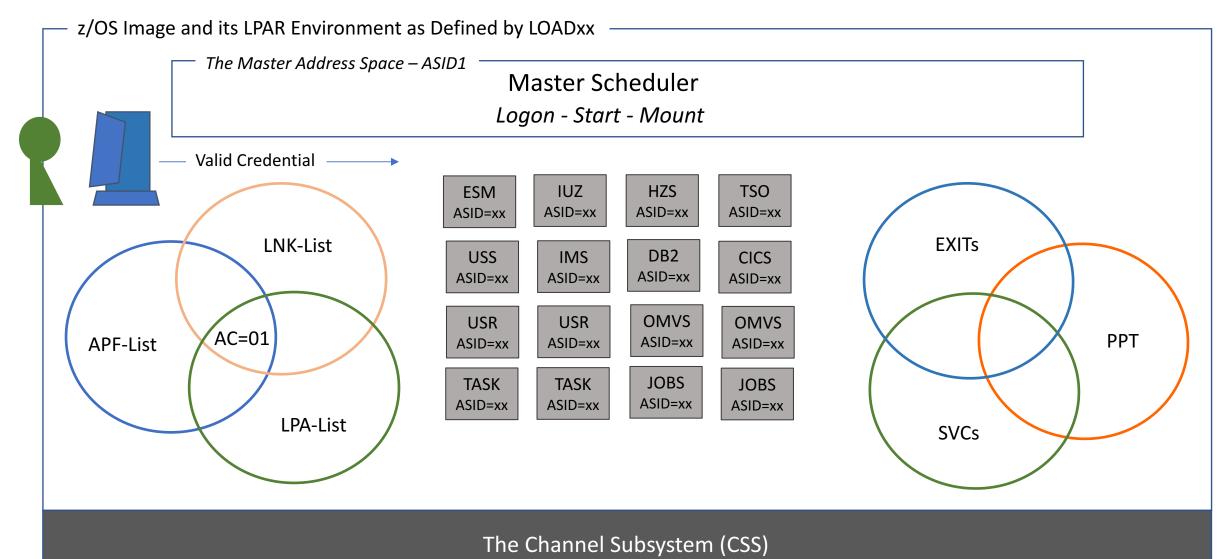
PROCVIEW {CORE | CPU | CORE, CPU OK} SYSCAT volserxycsdsname hlqtvc SYSPARM [xx] [(xx,yy,zz,...,L)] SYSPLEX plexname


01-04 - IODF Keyword 10-11 - IODF DS Suffix, if "01" then Dataset name would be IODF01 **13-21** - IODF DS High Level Qualifier, if "SYS1" then fully qualified = SYS1.IODF01 22-29 - OS configuration identifier used to select named OSCP from the IODF DS **31-32** - The Eligible Device Table associated with a named OSCP configuration **34-34** - "Y" to load all IODF defined devices & any other dynamically available devices 36-36 - "S" the subchannel set to be used during an IPL – Specify 0,1,2,3 or *

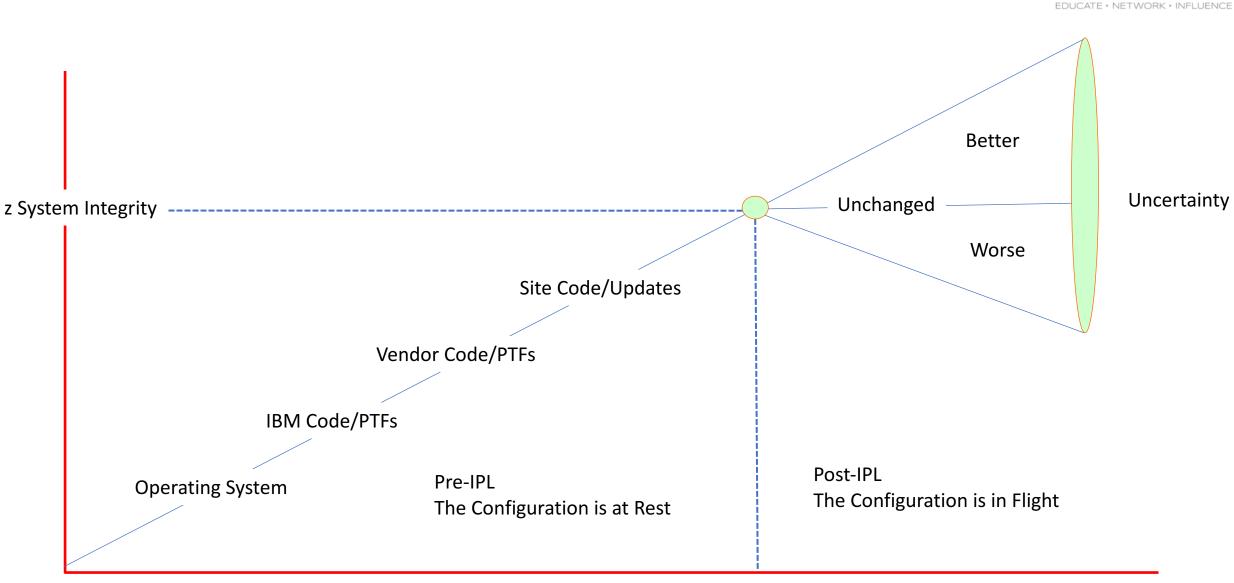
[volid] [*****] [*MCAT*]

When PROCVIEW CPU is in effect, DYNCPADD applies to CPUs. When PROCVIEW CORE is in effect, DYNCPADD applies to cores. Remains unchanged for the duration of the IPL.


These are loaded before the system is operational. Therefore, during the IPL their referential integrity cannot be fully validated.


APF Datasets are defined to the system at a very early stage of the IPL process. As a result the system has no knowledge of their actual existence and loads "as is". Errors in naming lead to Post-IPL APF vulnerabilities if they are allocated LINKLST Datasets are APFauthorized when IEASYS value LNKAUTH is set =LNKLST and a fetch is done using that dataset as part of the LNKLST but not when using that dataset as part of JOBLIB/STEPLIB/TASKLIB or any user-opened-DCB. If a library is in the LNKLST concatenation but is not APFauthorized, the system will consider the library to be unauthorized for the duration of the job or step if the library is referred to through a JOBLIB or STEPLIB DD statement. It is not necessary for the datasets in the LPALST to be APF-authorized. However, any module in the link pack area (pageable, modified, fixed, or dynamic LPA) is treated by the system as though it came from an APF authorized library PSW keys 0 - 7 are used by the z/OS base control program (BCP) and various subsystems and middleware. Key 0 is the master key. PSW keys 8 through 15 are assigned to users. The Program Properties Table can be used to modify expected PSW key values

Properly protect LNK and LPA data set to avoid system security and integrity exposures, just as you would any APF-authorized library.



<pre>EDIT TF0.TEST.PARNLIB(SHAREEXP) - 01.03 ************************************</pre>		
<pre>000001 //USERLST JOB 1, 'PRIVILEGED USER LIST', 000002 // CLASS=A, 000003 // MSGCLASS=A 000004 //* 000005 //LISTING PROC USRPFX='ICE.TEST', 000006 //* 000007 //USERLIST EXEC FGM=NEZRUSRL,PARM='PRIVUSERS' 000008 //STEPLIB DD DSN=&USEPRFX.LOAD,DISP=SHR 000009 //SYSPRINT DD DSN=ICE.APPS.REPORTS,DISP=SHR 000010 //* 000011 /* ****** ***************************</pre>		
<pre>D00003 // MSGCLASS=A 000004 //* 000005 //LISTING PROC USRPRFX='ICE.TEST', 000006 //* 000007 //USERLIST EXEC PGM=NEZRUSRL,PARM='PRIVUSERS' 000008 //STEPLIB DD DSN=&USEPRFX.LOAD,DISP=SHR 000009 //SYSPRINT DD DSN=ICE.APPS.REPORTS,DISP=SHR 000006 //* 000010 //* 000011 /* ****** ****************************</pre>	000001 //USERLST JOB 1, 'PRIVILEGED USER LIST',	*****
000005 //LISTING PROC USRPRFX='ICE.TEST', 000006 //* 000007 //USERLIST EXEC PGM=NEZRUSRL,PARM='PRIVUSERS' 000008 //STEPLIB DD DSN=&USEPRFX.LOAD,DISP=SHR 000009 //SYSPRINT DD DSN=ICE.APPS.REPORTS,DISP=SHR 000006 //* 000001 //* 000011 /* ****** ****************************	000003 // MSGCLASS=A	
000007 //USERLIST EXEC PGM=NEZRUSRL, PARM='PRIVUSERS' 000008 //STEPLIB DD DSN=&USEPRFX.LOAD, DISP=SHR 000009 //SYSPRINT DD DSN=ICE.APPS.REPORTS, DISP=SHR 000006 //* 000001 //* 000011 /* ****** ****************************	000005 //LISTING PROC USRPRFX='ICE.TEST',	000002 // CLASS=A,
000009 //SYSPRINT DD DSN=ICE.APPS.REPORTS,DISP=SHR 000010 //* 000011 /* 2***** ******************************	000007 //USERLIST EXEC PGM=NEZRUSRL,PARM='PRIVUSERS'	000004 //*
000011 /* ***** *****************************	000009 //SYSPRINT DD DSN=ICE.APPS.REPORTS,DISP=SHR	000006 //*
SUBMIT 000010 //* 000011 /* ****** ******************************		000008 //STEPLIB DD DSN=&USEPRFX.LOAD,DISP=SHR
	SUBMIT	000010 //*
		***** ********************************

On IBM mainframe systems *Job Entry Control Language* or *JECL* is the set of command language control statements that provide information for the spooling subsystem – JES2/JES3 - Wikipedia

5 - Post IPL - The z System Environment

z Integrity

System Integrity

System integrity is the responsibility of the operating system and deals with hardware features.

Prevent Unauthorized use of privileged functions.

- System Access Facility (SAF)
- System Management Facility (SMF)

Data Integrity

Data integrity is managed by the External Security Managers: RACF, ACF2 & Top Secret Prevent Unauthorized user

access to resources.

- Maintain/Enforce Logon Credentials
- Maintain/Enforce Data Access Rules

IBM System Integrity

System Integrity is IBM's commitment, design, and development practices intended to prevent unauthorized application programs, subsystems and users from bypassing system security—that is, to prevent them from gaining access, circumventing, disabling, altering or obtaining control of key system processes and resources unless allowed by the installation.

Authorized Program Facility (APF)

Allows the authorization of systemlevel programs to access/use privileged Instructions in order to modify or extend the basic z/OS functions.

For a Module to become APF Authorized:

- 1. It must Reside in a APF Dataset
- 2. Be Link Edited AC Code of (01) or
- 3. Reside in the Link Pack Area (LPA)

Abuse of APF Authorization will result in a loss of System Integrity and Security!

IBM z/OS® System Integrity Statement

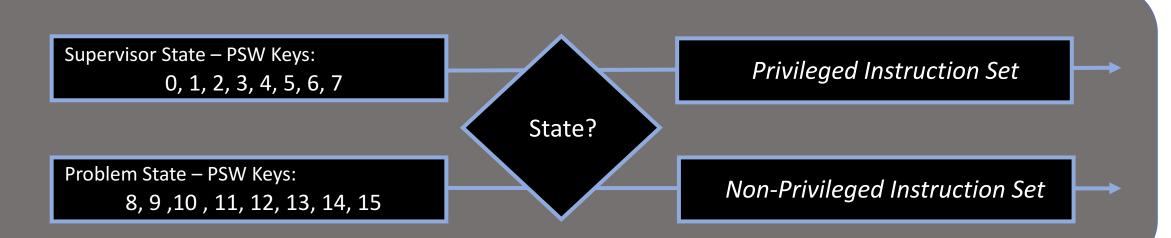
APF Authorized Libraries

Active LNK Datasets	APF	X Ca	t Type	Volume	SMSVol	A	Any AC(01)	Module in	APF Libra	ries	
SYS1.LINKLIB	APF	1 YE	S PDS	ZDRES1	/						
SYS1.MIGLIB	APF	1 YE	S PDS	ZDRES1	//	Name	Prompt	Alias-of	Size	TTR	AC
SYS1.CSSLIB	APF	1 YE	S PDS	ZDRES1		BPXQRATT	-	BPXINLPA	0006FCB8	02A21A	01
SYS1.SIEALNKE	APF	1 YE	S PLIB	ZDRES1		~ BPXORSD5		BPXINLP2	00050338	02470E	00
SYS1.SIEAMIGE	APF	1 YE	S PLIB	ZDRES1		~ BPXTHENF		BPXINLP2	00050338	02470E	00
SYS1.SHASLNKE	APF	1 YE	S PLIB	ZDRES1		BPXWRXEV			00000188	003E10	00
SYS1.SERBLINK	APF	1 YE	S PDS	ZDRES1		CBRBLSUI			00011E68	02990B	00
ISF.SISFLOAD		1 YE	S PDS	ZDRES2		CBRCTLR			000001F0	011905	00
ISF.SISFLINK		1 YE	S PDS	ZDRES2		CBRCTLR2			00000420	01190C	00
ISF.SISFMOD1		1 YE	S PDS	ZDRES2		CBRHCTLG		CBRHSMSI	00003BA0	011913	00
						CBRHDMAP		CDIMDHDI	00000120	011921	00
						CBRHMAT			00000120	011921	00

Just take a Look-See using TSO/ISPF 3.4!

A Program's "Module Calling Sequence" will determine if it's APF Authorized!

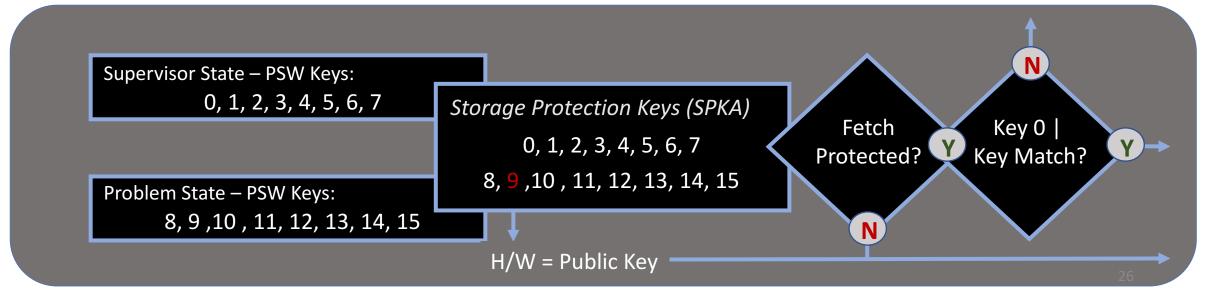
- The "Module Calling Sequence" (MCS) represents the order in which modules are concatenated together in order to build "Complete" Program Functions.
- The "Lead Off" Module in the MCS must be Link Edited AC(01) for the Program to achieve Authorized Program Status.
- Except for the "Lead Off" Module all other modules in the "Module Calling Sequence" all others need NOT be Link Edited AC(01) but they must all come from APF Authorized Datasets for the Program to gain Authorized Program Status or APF Authorized sources, i.e. System Link Pack Area (LPA).
- Upon execution of an Authorized Program all modules are treated "as if' they are AC(01).

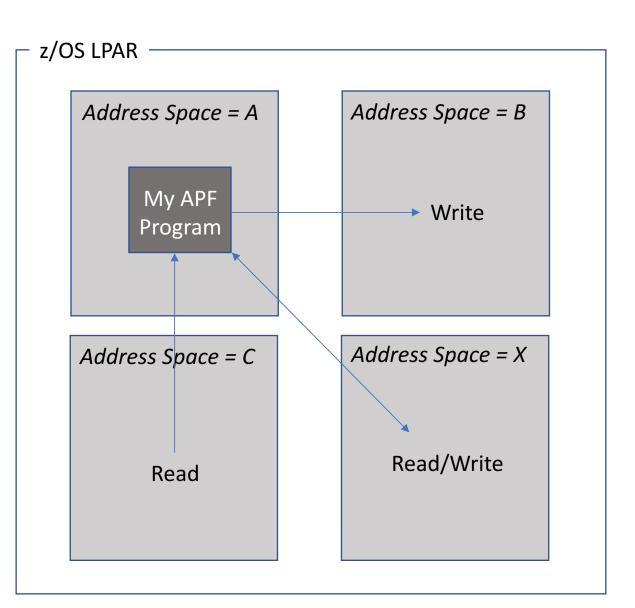


As a general statement, Privileged instructions are intended for OS supervisory functions. If by intent or not they may be used to compromise other users or the entire z Environment.

z/OS operates in either of two states: *Problem or Supervisor/System State. Which is determined by the value of their Program Status Word (PSW).*

- *Programs with a PSW in the range of 0-7 operate in Supervisor State execute privileged instructions.*
- *Programs with a PSW in the range of 8-15 operate in Problem State execute non-privileged instructions.*




Storage KEYs (SPKA) range from 0 to 15. 0-7 are "system keys". 8-15 are considered "user keys". Key 9 is a "public key" to which normal KEY checking does not apply. KEY 9 is a hardware implementation.

- A program with any PSW KEY can READ storage that is not fetch-protected. Only a program with PSW KEY 0 or with PSW KEY exactly matching the storage KEY can READ fetch-protected storage, unless KEY 9.
- A program with PSW KEY 0 can WRITE into storage of any key. A program with PSW KEY 1-15 can WRITE into storage only of that exact KEY or KEY=9.

Therefore, when in PSW KEY 0, a program can do whatever!

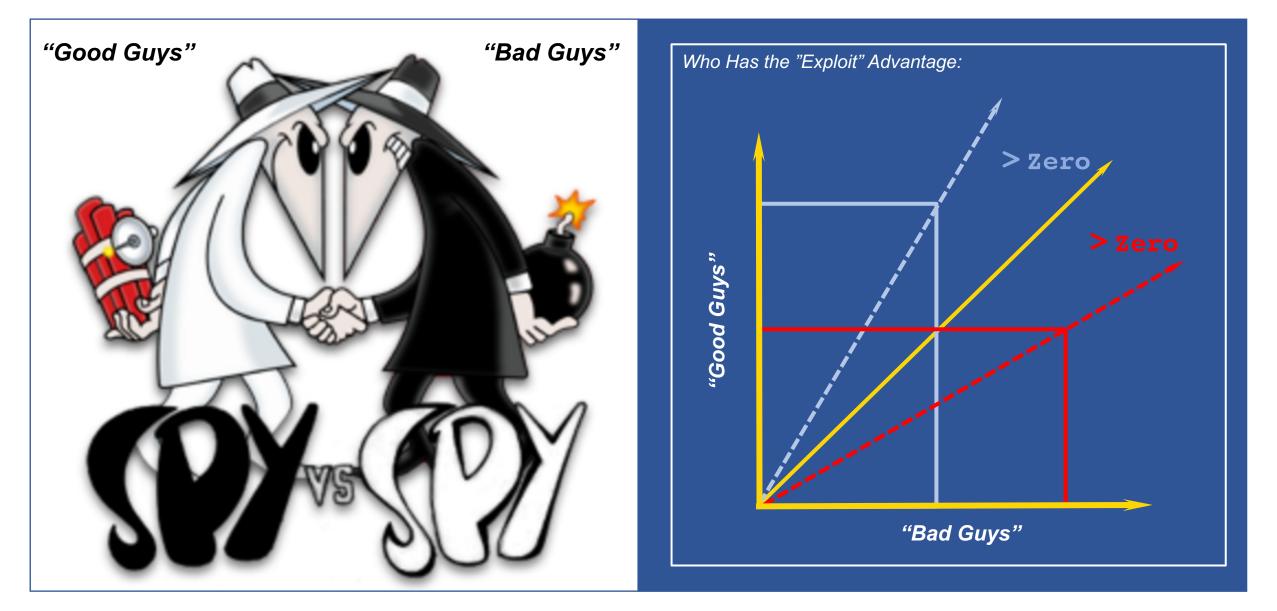
Question:

Can My APF Authorized program (from a valid APF Authorized Dataset marked AC(01) in one Address Space (A) Read from or Write to the memory of any other Address Space – B, C, X?

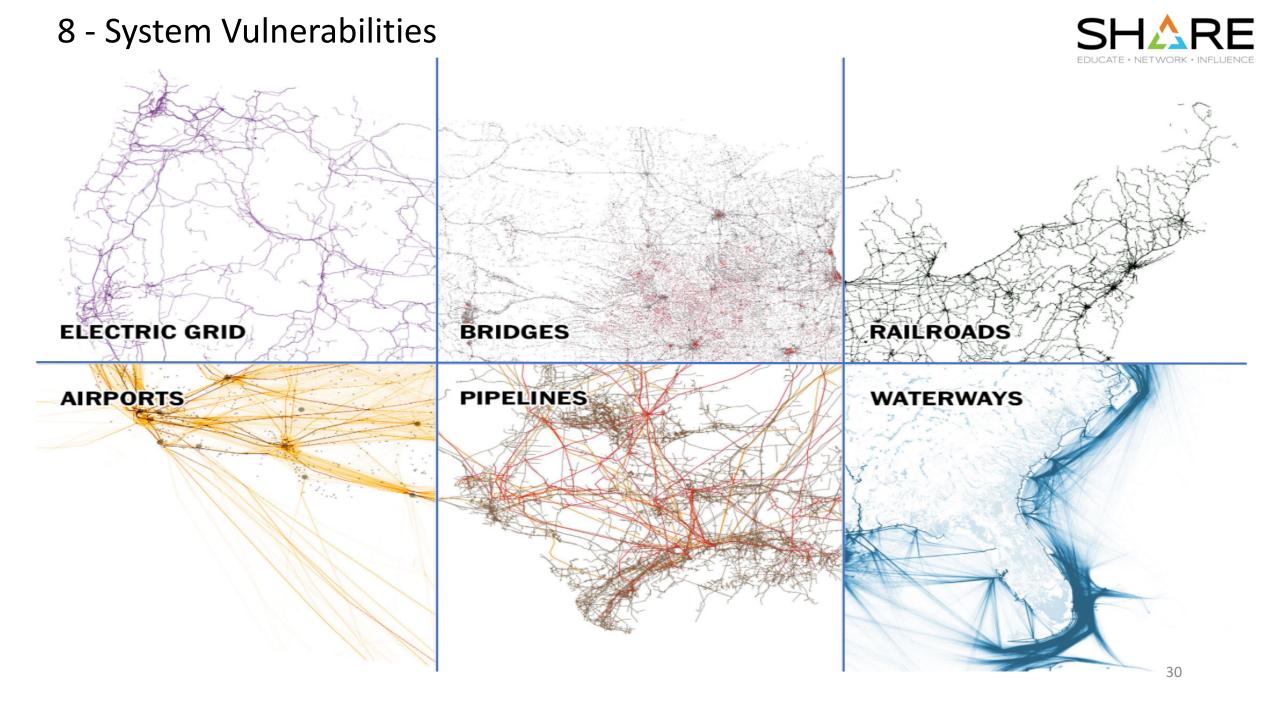
Answer:

If the Target Memory is not Fetch Protected, no problem.

If operating in Supervisor State, PSW KEY=0, no problem!


If Target Memory is Fetch Protected and the PSW Key of My APF matches the SPKA or the Target Memory, no problem.

If operating in PSW Key "ZERO", no problem. You have the Key to the "Kingdom"!

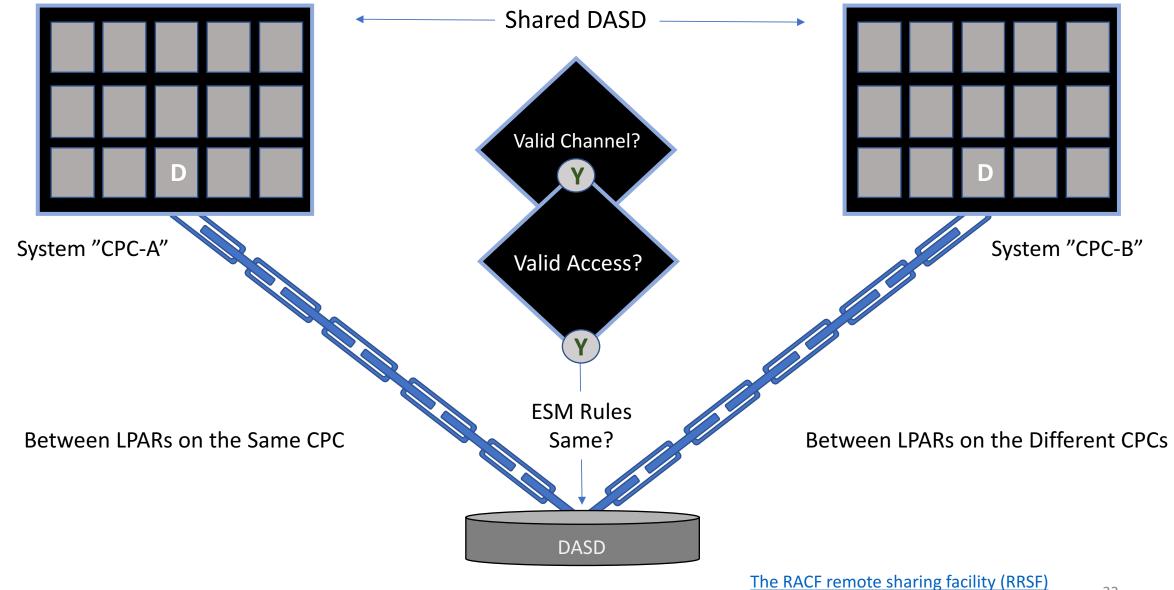


- Note that giving WRITE or higher access to an APF authorized library is analogous to giving a Linux user root authority. Users with WRITE or higher access to an APF authorized library can do anything they want to the system:
- As an APF authorized program I can issue SAF calls (RACROUTE) to create and delete security credentials with NO extraordinary RACF privileges
- Read/update the RACF database as an APF authorized program with NO extraordinary RACF privileges
- By giving someone update access to an APF authorized library you are saying "they can invoke ANY API that is available on this system that would normally be restricted. ANY of the restricted APIs
- MODESET can get you into and out of supervisor state and into key 0 or 8. To get into other keys, you would issue an SPKA instruction.
- The thing about supervisor state, key 0 is that you can access any storage in any key in any address space. When you are in supervisor state, non-zero key, you can access all storage in the key you are in and all storage you own, but the operating system protects you from accessing other storage.
- It's the job of the application/program to set the key and to request the key assigned to allocated storage. Some storage subpools have system-defined keys. But for all intents and purposes, it's the program itself that controls those values.
- Is correct when he says AC(1) does not give you either key 0 or supervisor state. It does give you the variations of MODESET that issue an SVC, and that can give you key 0 and supervisor state.
- It can change to supervisor state; it can to whatever key it wants to be running in that is why the access to APF libraries is of such high concern to auditors.

Ray Overby, CEO Key Resources

A System is Considered Secure when "Bad Guys" have a Negligible Advantage over "Good Guys".

Compromise


			npromises utes, or less	87%	Only 3% are discovered as quickly		ur fo	wo-thirds went ndiscovered or months r more	68%
	Weeks	Days	Hours	Minutes	Minutes	Hours	Days		Months
< Before the con	npromise			Elapsed t	ime			After the comp	promise >

* Verizon's 2017 Data Breach Investigations Report

Those that result from lax User Credential Control Those that result from Over Privileging Users Those that result form Configuration Errors Those that result from Code Based Errors

8 - System Vulnerabilities		
	2	2
First Response & Health Care	Auto, Home, Life Insurance	Finance & Banking
Federal & State Governments	Intel & Defense Agencies	Mining & Manufacturing
		32

- Pervasive DS Encryption - Don't Misplace Your Master Key! —

Separation of Duties and Responsibilities

System Programming

- Key Life Cycle
- ICSF

Storage Administration

- Dataset Management
- DFSMF

Security Administration

- Dataset Access
- RACF, ACF2, TSS

Long/Short-term data storage can be securely managed without exposing content to administrators/others.

ICSF – Integrated Cryptographic Services Facility

DSFMF - Assign attributes to data sets and objects so system can auto manage storage

Code Based Vulnerabilities may exist:

Controlling access to Supervisor/System State and therefore restricting access to privileged instructions is a critical first step in preventing vulnerabilities that expose system memory, control functions, integrity and security.

By intent or not, a program, like the sample shown, operating authorized can, as in this case, use the MODESET instruction to move into and out of Supervisor/System State.

Such "State Switching" could give the program unintended powers to READ Memory, as in this case, to extract the PSW Key using other privileged instruction. Change the Key Value as needed and then replace the old value with the new, thus changing the PSW/SPKA key association.

TESTA	UTH STATE=YES, RBLEVEL=1	TEST STATE
STC	R15, STATE	SAVE IT
LA	R2,0	
MODES	ET MODE=SUP	CAPTURE KEY
IPK		GET KEY R2
MODES	ET MODE=PROB, KEY=NZERO	SET KEY
ST	R2,KEY	SAVE KEY
e		
e		
٠		
٠		
MODES	ET MODE=SUP	
L	R2,KEY	
SPKA	0 (R2)	REVERT KEY
CLI	STATE,0	SUP. STATE
BE	RETURN2	YES
MODES	ET MODE=PROB	

Never forget PSW Key 0 is the Key to the "Kingdom"!

IBM utilizes several internal and external sources as input to the security and system integrity process to assist IBM as it investigates and works on vulnerabilities that might potentially affect IBM Z. So should you! <u>US-CERT | United States Computer Emergency Readiness Team</u>

	intel Newsroom	Top News Sections 👻 N	News By Ca	ategory -	
IBM				Marketr	
IBM Se	curity	Discover 🗸	Solutions \vee	Prod	
	IBM			Marketplace	Searc
Securit	IBM Z			Hardwar	e∨
IBI Deep intelli	It infrastructure > Z > Capabi Systems integ Protect enterprise compliant threats				
<u>[]</u> 11	Get security white paper				
	You can't buy system integrity. You're born with it.	Originally issued in 1973 with the IBN System Integrity statement has stood of IBM's confidence in and commitme System Integrity is IBM's commitmer practices integried to prevent upauth	d for over four d ent to the maint nt, designs, and	lecades as a syr frame platform. I development	

practices intended to prevent unauthorized application programs,

1910	🔊 US-	CERT	
IBM			Mar
IBM Security Disco	over 🗸 Solutions 🗸 Produ	ct Search Services News Collaboration $arkappa$	ELAT
IBM	-		
IBM Z	Why IBM Z 🗸 Capabilities	\checkmark Systems and software \checkmark Resources \checkmark	
	Register	for IBM Z Security Por	tal
	The fields indicated wi	th an asterisk (*) are required to complete this transaction	; other fields are optional. If you do r
	information, please us	e the "Back" button on your browser to return to the previo	ous page, or close the window or brow
	First name:*		
	i not hamor		
	Last Name:*		
	Email:*		
	Companys *]
	Company: *		
			1
	Country / region:*	Please select one	

Glossary of Terms:

1. APAR - Authorized Program Analysis Report describes problem, formally tracked until resolved - Authorized Program Facility 2. APF 3. ASID - The Numeric Address Space Identifier 4. BCP - The Base Control Program - Backbone of z/OS Reliability and Integrity 5. CBPDO - Custom-Built Product Delivery Option 6. CF - Channel Facility 7. CPC - The Central Processing Complex 8. CPACF - CP Assist for Cryptographic Functions - Compare Logical Intermediate - In snippet - test for change in State 9. CLI 10.CSS - Channel Sub-System - Controls data flow input/output. - Channel Path Identifier - a logical disignation 11.CHPID 12.CMT - CHPID Mapping Tool - Maps Logical to Physical Channels 13.DASD - Direct Access Storage Device - Data Extent Block build on OPEN of DCB (Data Control Block). Can examine but not change 14.DEB - Dynamic Partition Manager - Linux specific Partition Management 15.DPM - Dispatchable Unit Control Table - Control over the Authority State 16.DUCT 17.DSFMF - Assign attributes to data sets and objects so system can auto manage storage 18.EDT - Eligible Device Table 19.EOS - End of Service - a date 20.ESM - External Security Manager

Glossary of Terms:

21.ESP	- Early Support Program
22.FICON	- Fiber Connection - FICON has replaced ESCON
23.GDPS	- Geographically Disbursed Sysplex
24.HCD	- Hardware Configuration Definition
25.HMC	- Hardware Management Console
26.HSA	- Hardware Storage Area
27.ICSF	- Integrated Cryptographic Services Facility
28.IFL	 Integrated Facility for Linux — A System Assist Processor(SAP)
29.IMSI	- Initialization Message Suppression Indicator
30.IOCP	 I/O Configuration Program — Hardware Portion of IODF
31.IODF	- Input/Output Definition File - HCD - IOCP, OSCP and SWCP
32.IOCDS	 Input/Output Configuration Dataset, same as IOCP
33.IPK	- Insert PSW Key - A privileged Instruction - See snippet
34.IRIM	- IPL Resource Initialization Modules
35.JCL	 JOB Control Language — used to submit job to z/OS
36.LCSS	- Logical Channel Sub-System - Up to 6 in a z14 each supports up to 15 LPARs
37.LPAR	- Logical Partition — Up to 85 in a z14
38.LTSR	- Long-Term Support Release - 2yrs Minimum, 1yr extension is optional at EOS
39.MODESET	- Change system status - alter PSW/PKM or State Indicator
40.NIPCON	- A named Console Device used only during a system IPL

Glossary of Terms:

41.NIPS 42.OSCP 43.PCIe 44.PCHID 45.PDE 46.PTF	 Nucleus Initialization Processing Operating System Control Program — Software portion of IODF Peripheral Component Interconnect Express Physical Channel Identifier - Up to 256 in a z14, shared by all CHPIDs Pervasive Dataset Encryption Program Temporary Fix — When applied resolves a related APAR — FIX Package FIXPCK
47.PU	- Processor Unit - Up to 107 in a single z14 CPC
48.RCT 49.RIM 50.RRSF	 Region Control Task - Highest priority Task in Address Space - Controls Swap in/out Resource Initialization Modules RACF Resource Sharing Facility
51.RSU	- Recommended Service Update
52.SAF	- System Access Facility
53.SAP 54.SPE	 Service Assist Processor — I/O Channel Channel Management, zIIPs, zAAPs, IFL's Describes a New Function APAR
55.SPKA	- Set Storage Protect Key from Address - A Privileged Instruction
56.SMP/E	- System Modification Program/Extended
57.SQA	– System Query Area – A storage area in main memory
58.SRB 59.SVC	 Service Request Block - Supervisor State - SRB Routine, SRB Mode, Scheduling an SRB Supervisor Call - Named System Modules - System Service Routines - IBM/USER
60.SWCP	- Switch Configuration Program

Glossary of Terms:

61.TCB	Task Control Block - Problem State - Application Programs	
62.UCB	Unit Control Block — Software portion of the Device Chain	
63.UCW	Unit Control Work — Hardware portion of the Device Chain	
64.USS	Unix System Services	
65.SE	System Element – 1 of 2 CPC specific Workstations	
66.SECINT	System Security and Integrity APARs/PTFs	
67.POR	Power on Reset - A base level initialization of hardware and possible IPL	í
68.PPT	Program Properties Table	
69.PR/SM	Processor Resource/System Manager	
70.PKM	Program Status Word MASK - Control PSW Key Changes	
71.PSW	Program Status Word - 0/7 protected & 8/15 not protected	
72.SMF	System Management Facility — used to control system event logging	
73.SAN	Storage Area Network — Sometime SNIA	
74.TKE	Trusted Key Entry Workstation	
75.US-CERT	United States Computer Emergency Readiness Team	
76.z/OS	A z Mainframe Operating System	
77 7/0SMF	The 7/08 System Management Facility - a web-based workstation interface	

77.z/OSMF - The z/OS System Management Facility - a web-based workstation interface

Tue	3 : 15	РМ	23559	Top 11 Things You Should Be Doing to Secure Your z/OS System	263	Tom Conley	Pinnacle Consulting
Tue	4:30	РМ	23190	Enterprise Knights of IBM Z	264	Bryan Childs	IBM Corporation
Wed	8:30	AM	22990	Exploiting the Mainframe 101	102	Ray S. Overby	Key Resources, Inc.
						Mark Wilson	RSM Partners
Wed	8:30	AM	23451	A Roadmap to Compliance	264	Brian Marshall	Vanguard
Wed	11:15	AM	23305	Auditing Crypto Keys for Pervasive Encryption and Other Data	264	Roan Dawkins	IBM Corporation
Wed	3 : 15	РМ	23198	Securing Your Crypto Infrastructure	241	Greg Boyd	MainframeCrypto
Wed	4:30	РМ	23037	Protecting Privacy 101: PCI, GDPR, and You	224	Phil Smith III	Micro Focus
Wed	4:30	РМ	23303	Pervasive Encryption - Cryptographic Keys Hands-on Lab	260	Roan Dawkins	IBM Corporation
						Sudha Dhanwada	IBM Corporation
Thu	8:30	AM	23385	How to Boil Security Down to One Line a Day	264	Bill Valyo	Bank of America
Thu	10:00	AM	23364	RACF Performance Tuning	241	Robert S. Hansel	RSH Consulting
Thu	11:15	AM	23336	RACF Database Dangerous Discoveries! Hands-on Lab	260	Roan Dawkins	IBM Corporation
						Sudha Dhanwada	IBM Corporation
Thu	3 : 15	РМ	23556	z/OSMF: What You Need to Know from a Security Perspective	264	Julie Bergh	IBM Corporation
						Richard Faulhaber	NewEra Software
Thu	4:30	РМ	23341	z/OS UNIX Security Fight or Flight?	264	Scott Woolley	IBM Corporation
Fri	8:30	AM	23370	UNIXPRIV Class	264	Robert S. Hansel	RSH Consulting
Fri	10:00	AM	23555	Two Crypto Nerds Talking Dataset Encryption Setup Experiences	264	Julie Bergh	IBM Corporation
						Greg Boyd	MainframeCrypto
	11 : 15		22703	Data Privacy and the Insider Threat	102	Johnathan Crossno	Compuware Corp.
Fri	11 : 15	AM	23301	Pervasive Encryption - Let's Encrypt Some Data Hands-on Lab	260	Roan Dawkins	IBM Corporation
						Scott Woolley	IBM Corporation

ebooks publica 'White What Readers "Today Are confer Saying going t about severa AE2 since v	nted to let you know that this is an extremely helpful an ation. The layout and references to the STIG, Vendor recon Hat' advice are very good." , I had the opportunity to use the information in that publ rence call with some auditors. Without knowing the details o to be discussing, this proved to be extremely valuable wher I of our ESM control option settings. This eBook saved us we had most of the information they were looking for at our to ior Systems Software Engineer	ication during a f what we were a going through hours of time,	66	What's happening in The z Exchange? What's happened in The z Exchange?	THE 2 CHANNEL
security managers, hov eBooks have attempter both the why and why r AE2 - zAuditing Essentia AE2 - zAuditing Essentia AE2 - zAuditing Essentia AE1 - The IODF is the cer AE1 - zAuditing Essentia z/0S V2R3 - What's New in z/ V2R2 - What's New in z/ V2R1 - What's New in z/ CICS - This eBook prov and its resources and cc CICS Essentials - Auditi CICS has its own secu compliance requiremer CICS Best Practices	als - Volume 2 - Taming RACF - SETROPTS als - Volume 2 - Mastering CA ACF2 - GSO als - Volume 2 - Controlling CA Top Secret ntral configuration file for z Systems. Settings outlined. als - Volume 1 - zEnterprise Hardware 'OS V2R3 These are "Cliff's Notes" type eBooks 'OS V2R2 detailing what's coming in the 'OS V2R1 latest releases of z/OS. vides a wealth of information about CICS, its operations apabilities along with guidelines and recommendations. ng CICS - A Beginner's Guide rity but does not cover many internal policies or legal nts. Recommendations are provided. e complex with many layers and facets. Learn the	Become a Peer Reviewer Name: Email: Phone: Which eBook would you like to review? Which eBook would you like to review? Submit	This Month's Webcast Sch Archive of Recordings/Sli Presenters Topics The z Exchange		Contact Us Name: Email: Email: Phone: optional Message:

Subject Matter Experts

Presentation_Slide Decks

The zExchange

z Systems customers should subscribe to the <u>Systems Security Portal</u> to receive information about security and system integrity APARs, their associated fixes, and critical IBM Systems security and integrity service updates.

IBM System z Security Portal FAQ					
IBM	Marketplace Q C	۲			
IBM Offering I	Information Explore financing Download				
	IBM System z Security Portal FAQ This document is intended to help customers better understand the System z Security and System Integrity process. It answers questions about the System z Security Portal so they can best integrate this critical security information into their individual security processes.				
	IBM z Systems Security Portal				
	Frequently Asked Questions				
	Worldwide				

IBM System z Security Portal FAQ

THE LAST CHAPTER

- What we've been doing How to Build a Trusted Computer Base, a base that provides both Operational Integrity and Data Security.
- ✓ What we know now is that the trust we seek is a process that will work most of the time. But, it's not an absolute or something we are able to measured.
- ✓ In order to understand how to build trust you need to study these materials and when you're done (it may take a while) be able to communicate your understanding clearly to others.
- To communicate it you need to explain how it works, why it matters to you and why others should care as well.
- ✓ To maximize the value of what you now know about z/OS as the platform for building a trust with users, business partners and your fellow employees you must be ready and able to SHARE (it).
- ✓ Finally, System Integrity and the Trusted Base will prove to be absolutely useless if not understood. From this point forward, it's up to you.

Let's Build a z Environment - 102

Session 23331 Tuesday, August 14 at 11:15-12:15 AM STL CC, Room 242

Presented by Paul R. Robichaux NewEra Software, Inc.

