
New System z Technology:
Simultaneous Multithreading

Bob Rogers

Sponsored by The z Exchange and
NewEra Software

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 1

Abstract

Simultaneous Multithreading (SMT) is a technique for
increasing the efficiency of CPUs to deliver more
throughput per processor core. It has been exploited on
IBM POWER Systems and Intel processors for several
years but not yet implemented on IBM System z
mainframe processors. However, there have been signals
that SMT will be available on the next System z machine.
If this happens, we should understand SMT, how it might
be implemented on the mainframe, and what it means to
mainframe installations. In this webcast, Bob Rogers will
provide the historical background and future
prognostication to provide insight into this technology
before it appears for z/OS and zLinux systems.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 2

Introduction

In my first webcast for NewEra, I spoke of the
mainframe’s past, present and future. I was prepared, if
time permitted, to talk about a new technology that I
think is coming to the mainframe. That technology,
called Simultaneous Multithreading or SMT, is the topic
of this webcast.

It is interesting because it has some of the attributes of
a free lunch.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 3

Understanding SMT

Simultaneous Multithreading is refinement in processor
design that is the end of a sequence of ideas that have
increased the complexity of the processor to deliver greater
throughput.

In order to understand how SMT works and what it means
for performance management and capacity planning, it is
best to start with how modern computers process
instructions.

We can start with the evolution of the instruction pipeline.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 4

Conceptual View of Execution vs Reality

1/12/2015
© Copyright NewEra Software and Robert Rogers, 2015, All rights reserved.

5

instruction instruction instruction instruction

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway

Result

Instruction
Fetch

Instruction
Decode

Operand1
Address

Operand1
Fetch

Operand2
Address

Operand2
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Execute Instruction as an "internal subroutine" (millicode)

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch Execute Putaway

Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch Execute Putaway

Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch Execute Putaway

Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch Execute Putaway

Result

Conceptual View

Decomposed

Pipelined

Time

Schematic of Superscalar Pipes

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 6

Instruction
Decode

Instruction
Grouping

Operand
Access

Execution

Put Away
Results

Each box from left to right represents a pipeline stage which takes one cycle. After
instructions have been decoded and put into superscalar groups, they are issued
down the two pipes one or two instructions at a time. In this example, the apparent
order of execution is still maintained.

A Superscalar processor can process multiple instructions simultaneously because it has
multiple units for each stage of the pipeline.

RISC-like Superscalar Pipes

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 7

GR
RF

AG D$

Address
generation

D$ FM

format

WB Fin

write
back

Load/Store Units (LSUs)

EX CC WB Fin

Fixed Point Units (FXUs)

AG D$ D$ FM WB Fin

EX CC WB Fin

Store Queue

Depiction of part of the z196 pipeline showing 2 load/store units and 2 fixed
point units. The stages for instruction fetch, decode and grouping and
putaway are not shown. Also not shown are the floating point units for binary
and decimal arithmetic. Under ideal conditions, the z196 can execute 5
instructions simultaneously.

Out-of-Order Execution
• A processor that can execute instructions Out-of-Order (OOO)

uses detailed bookkeeping and some tricks to appear to
execute the program as it was written.

• To do the bookkeeping, the processor maintains what is called
a global completion table to track the status of all in-flight
instructions.

• The results of an instruction cannot be stored until all older instructions
have previously completed.

• If, for example, an interrupt occurs, all instructions that have not already
stored results must be “forgotten”, and re-executed later. The interruption
PSW reflects the newest instruction that stored results (i.e. the last
completed instruction such that all preceding instructions had also
completed).

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 8

Out-of-Order Execution Example
(On a 2-way superscalar processor)

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 9

Original Instruction Sequence
7 instruction groups and 10 cycles AGI delay
seq instruction text | seq instruction text

01 LLGT @04,XFORNP31 |

02 L @04,FW(,@04) | 03 ST @04,XFORS

04 LG @05,TOPPTR |

05 LG @09,RTTOP(,@05) |

06 ST @04,RSISIZE(,@09) | 07 SLR @02,@02

08 ST @02,RSIPREV(,@09) | 09 LG @02,RDIPTR64

10 LH @08,RDITYPE(,@02) |

Reordered Instruction Sequence
5 instruction groups and 6 cycles AGI delay
seq instruction text | seq instruction text

01 LLGT @04,XFORNP31 | 04 LG @05,TOPPTR

05 LG @09,RTTOP(,@05) | 07 SLR @02,@02

02 L @04,FW(,@04) | 06 ST @04,RSISIZE(,@09)

08 ST @02,RSIPREV(,@09) | 09 LG @02,RDIPTR64

03 ST @04,XFORS | 10 LH @08,RDITYPE(,@02)

Register Renaming for OOO
• An OOO z/Architecture processor does not have just 16 GPRs.

– For example, the zEC12 has 80 physical GPRs.

• The reason there are so many physical GPRs is so that the
processor can effectively execute instructions out-of-order.
– The extra physical GPRs allow the processor to reload an architected

GPR while its previous value is still needed.
– Using extra physical registers eliminates GPR interlocks

• Consider this instruction sequence:
L 4,0(,1) Load address of first parameter
L 2,0(,4) Load first parameter into register 2
L 4,4(,1) Load address of second parameter
L 3,0(,4) Load second parameter into register 3

• An OOO processor with register renaming can perform both
loads of GPR 4 at the same time, and both loads using GPR 4
at the same time.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 10

Single-threaded vs Multithreading

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 11

Single-threaded Temporal
Multithreading

Simultaneous
Multithreading

1 2

3 4

5 6

987

10 11

1 2

1 2

3 4

3 4

5 6

987

1 2

1 2

3 43 4

5

6 7 8

5 65

6 7 87

9

8

11

Thread 1

Thread 2

C
ycles

C
ycles

C
ycles

LSU = Load/Store Unit
FXU = Fixed Point Unit

L
S
U
1

L
S
U
2

F
X
U
1

F
X
U
2

L
S
U
1

L
S
U
2

F
X
U
1

F
X
U
2

L
S
U
1

L
S
U
2

F
X
U
1

F
X
U
2

10

9

9

9

10

SMT Effectiveness
• Based on some early papers, a core design with two

simultaneous threads (SMT2) can deliver an additional 40%
throughput.
– This is a gross approximation and actual results can vary considerably.

– And, this is only when both threads are busy.

• Unfortunately, the additional throughput from SMT does not
scale with the number of threads. This is because all the
threads on a core share some limited resources.

• In a case where two threads add (nominally) 40% throughput,
a core with four threads (SMT4) can deliver (nominally) only
60% more than single-threaded.
– That’s not even 15% more than SMT2.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 12

Evaluating SMT
• On the positive side, SMT delivers more throughput per core.

– More capacity for a given footprint size
– Less power and cooling required per unit of capacity

• But, there are negatives as well.
• The first is that an individual thread in multithread mode is

slower than a single thread would be. The speed drops quite
rapidly with the number of threads.
– If an SMT2 core provides 140% of the capacity of a single thread, then two

threads will (on average) each run at 70% of the single-thread speed when
both threads are active.

– For SMT4, if all four threads are active, they would run at only 40% of the
single thread speed.

• The second negative is an increase in variability.
– Increased sharing of low-level resources by threads makes the amount of

work that a thread can do dependent on what else the core is doing.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 13

What Causes the Slowdown?
• A major cause of less than linear speed-up is the sharing of

processor cache.
– On recent System z processors, there are two levels of cache that are

private to the core (on zEC12, they are called L1 and L2).

– If a core has more than one thread, these caches will be shared across
all the threads.

– Each thread is forces to get by with a smaller footprint in these caches
and so takes more L1 and L2 misses than if the caches were not
shared.

• Other resources must also be shared:
– The pipes,
– The translation lookaside buffer (TLB), and,
– Physical General Purpose Registers
– Store Buffers and other resources on the core.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 14

Why the Variability?
• Citing numbers like 140% throughput for SMT2 or 160%

throughput for SMT4 are gross simplifications.

• Actual throughput for SMT2 can range from less than 100%
(yes, SMT2 can be worse than single-threaded) to close to
200%, depending upon the usage of the shared resources.

• For example, if programs running on the same core stress the
same resources, they will run slower than average.

• Alternately, if the programs resource use is complimentary,
they can run close to the ideal maximum speed.

• Running the same application multiple times shows less
repeatable CPU usage because it may run in differing
environments.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 15

Some Remediation for Charge-back
• For internal charge-back, IBM has paved the way for more

stable charge-back with an enhancement made in z/OS 2.1.

• Even on systems exhibiting wild variations in CPU time for
jobs, the number of instructions executed by a job would be
expected to be fairly stable.

• To exploit this, z/OS 2.1 can include instruction count data in
the SMF type 30 record, provided that the installation has
turned on hardware instrumentation (HIS) and told SMF to
include the data.

• A charge-back scheme based on instruction counts rather
than CPU time might be expected to exhibit more
repeatability from one run to the next than one based on CPU
time.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 16

Preparing for CPU Slow-down
• z/OS provides fields in the SMF type 30 record that identify

the name of the program running on the task that has
consumed the most CPU in the time covered by the record
and give the percentage of a CPU that that task consumed.

• IBM provides a tool to identify potential problems in a batch
flow, called Batch Network Analyzer for z (zBNA).
– It can be used to explore what-if scenarios by simulating how a batch

flow would run on a different speed processor.

• Transaction processing workloads, in general, should not have
much problem with the SMT-induced slowdown.
– The CPU-using portion of a transaction is typically pretty small

– Furthermore, much of the CPU delay portion of a transaction will be
eliminated because the transaction manager will have more threads
on which to run the transactions.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 17

Some Prognostication
• The System z hardware will initially support SMT 2 – just like

other platforms when they introduced SMT capability.

• PR/SM will not share the threads of a core across multiple
guests. All threads will be assigned to a single guest.

• zLinux, when running in a partition, will use the SMT
functionality already present for other platform but adapted
to the details of z/Architecture.

• zVM will exploit SMT by dispatching guest CPUs on threads
without regard to core boundaries.

• Predicting what will be supported by z/OS is more difficult.
– Supporting SMT for specialty engines would greatly benefit Java

– The problems of reduced CPU speed and variability are much greater
for z/OS than zLinux or zVM.

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 18

1/12/2015 © Copyright NewEra Software and Robert Rogers, 2015, All rights reserved. 19

Questions?
If you are listening on your computer and do not have access to a

microphone, please use the Q&A box at the bottom of your screen.
Send your question to Jerry Seefeldt and I will ask it during the Q&A period.

Thank you for attending today’s webcast.
You will receive an email with a link to the slide deck used in today’s

webcast.

