
z/OS V2R3 Client Web Enablement Toolkit:

More Tools to Transform Your z/OS Applications

into RESTful Clients the Easy Way

Steve Warren, IBM

z/OS Client Web Enablement Toolkit Tech Lead

Email: swarren@us.ibm.com

:@StevieWarr2

August 9, 2017
Company

mailto:swarren@us.ibm.com

2

Agenda

• Overview of Toolkit

• Basic usage of HTTP Enabler

• New toolkit features

• REXX support

• HTTP streaming send and receive (V2R3)

• AT-TLS interoperability support

• Enhanced HTTPS functionality

• Support for direct HTTP tracing to data sets or zFS files

• JSON parser performance improvements for very large JSON text

• Support for the HEAD HTTP request method

3

Overview of Toolkit

4

z/OS serving REST APIs

• z/OS platform has for years been labeled “the server of servers” and houses
much of the world’s most critical data.

• Enhancements to the z/OS Web serving space through the years have
allowed this mammoth workhorse and repository of data to be more easily
accessible to other systems.

5

Socket from COBOL
DB2 REST UDF

HTTP client from Java

What about z/OS as a REST client?

• Client solutions imbedded in individual products or languages

• No generic web services or even a JSON parser available in all environments

6

Introducing the z/OS Client Web Enablement

Toolkit!

The z/OS client web enablement toolkit provides a set of lightweight application
programming interfaces (APIs) to enable traditional, native z/OS programs to
participate in modern web services applications.

● Pieces of the toolkit:

– A z/OS HTTP/HTTPS protocol enabler to externalize HTTP and HTTPS client functions in an easy-
to-use generic fashion for user’s in almost any z/OS environment

– A z/OS JSON parser which parses JSON coming from any source, builds new JSON text, or adds
to existing JSON text.

● The toolkit allows its two parts to be used independently or combined together.

– Payload processing is separate from communication processing.

● The interfaces are intuitive for people familiar with other HTTP enabling APIs or
other parsers

● Easy for newbies

7

General programming toolkit environment

• Runs in just about any address space
• Code runs in user’s address space

• Supports both authorized and un-authorized callers

• Easy API suite provided

• Multi-language support
• Include files supplied for C, COBOL, PL/I, Assembler, REXX

• Multi-language samples provided

8

z/OS HTTP/HTTPS Protocol Enabler Details

9

Usage & Invocation – z/OS HTTP Services

• Provides similar functionality to existing open-source

libcurl HTTP/HTTPS interface

• Interface is very similar

• Underlying code is z/OS-specific and not ported in any way

10

HTTP features supported by toolkit

• HTTPS connections

• HTTP cookies management

• Proxies

• URI redirection

• Basic client authentication

• Chunked encoding

11

HTTP Services execution environment

• Specific requirements for the HTTP portion of the toolkit:

• Supports task mode, non-cross-memory callers

• Execution key 1 thru 15 allowed

• OMVS segment required for address space using HTTP enabler

• Recovery recommended by caller

12

Demo 1

13

Demo 2

14

Structure of an HTTP Toolkit Application

15

Connections / Requests

● The HTTP/HTTPS enabler portion of the toolkit

encompasses two major aspects of a web

services application:

– The connection to a server

– The request made to that server along with the

response it returns

16

HTTP Connections

● A connection is simply a socket (pipeline) between the application

and the server.

● Must be established first before a request can flow to the server.

● Many options available for connection including:

– SSL/TLS

– Local IP address specification

– IP Stack

– Timeout values

17

Steps to create an HTTP Connection

● Initialize a connection (HWTHINIT)

– Obtain workarea storage for the connection

● Set one or more connection options (HWTHSET)

– One option at a time

● Make the actual connection (HWTHCONN)

– Creates the socket to the specified server

18

HTTP Request Overview

• A client makes an HTTP request to a server (endpoint)
• This HTTP request will typically be one of these types:

• GET (read existing resource)

• PUT (write/update existing resource)

• POST (write new resource)

• DELETE (remove existing resource)

• May send Request Headers

• May send Request Body (PUT and POST)

• The endpoint returns an HTTP response
• Response consists of status (1xx, 2xx, 3xx, 4xx, 5xx)

• Response headers

• Response body (most requests)

19

HTTP Requests

● An HTTP request sent over an existing connection

– Targets a particular resource at the domain established by

the connection

– An HTTP GET, PUT, POST or DELETE is specified as the request

method

● Requests not tightly-coupled to a connection. The same request

can be sent over different connections

● Response callback routines (exits) can be set prior to the request

to handle returned response headers and response body.

20

Steps to create an HTTP Request

● Initialize a request (HWTHINIT)

– Obtain workarea storage for the request

● Set one or more request options (HWTHSET)

– One option at a time

● Send the request over a specified connection (HWTHRQST)

– Flows the HTTP REST API call over the connection (socket) and then

receives the response

21

HTTP Connection Details

22

Where do I want to connect?

•REST API specification details the location where the

request must target

•Here are some examples:
• Google® Maps Directions API specifies:

• https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters

• Yelp® Search API specifies:

• http://api.yelp.com/v2/search?searchParms

• FAA Airport Service API specifies:

• http://services.faa.gov/airport/status/airportCode

https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters
http://api.yelp.com/v2/search?searchParms
http://services.faa.gov/airport/status/airportCode

23

Format of a URI (URL) in the world of HTTP

A Uniform Resource Identifier (URI) is the way a REST API is represented. A simplified syntax of a
URI is:

scheme://host[:port] [/]path[?query][#fragment]

|----------------------------------| |---|

where and how to connect? what is the particular request?

Connection portion of URI Request portion of URI

scheme – HTTP (unencrypted) or HTTPS (encrypted) (optional)

host – hostname or IPv4 or IPv6 address (e.g. www.ibm.com)

port – an optional destination port number (80 is default for HTTP scheme, 443 for HTTPS scheme)

path – an optional hierarchical form of segments (like a file directory) which represents the
resource to perform the HTTP request method against

query – an optional free-form query string to allow for the passing of parameters

fragment – an optional identifier providing direction to a secondary resource

http://www.ibm.com/

24

Setting Location of Connection

• HWTH_OPT_URI (required) – valid values are either a v4 or v6 IP address, or

hostname
• Examples:

• http://192.168.0.1

• http://[2001:1890:1112:1::20]

• http://www.example.com

• HTTP Scheme is optional

• HWTH_OPT_PORT (optional) – value specifying which remote port number to

connect to, instead of the one specified in the URL or the default HTTP or

HTTPS port.
• Default for HTTP is 80

• Default for HTTPS is 443

http://192.168.0.1/
http://[2001:1890:1112:1::20]/
http://www.example.com/

25

Setting Source Location of Connection

• HWTH_OPT_IPSTACK – Optional value 1 to 8 character z/OS TCP/IP

stack to be used by the connection
• Procname of TCP/IP (useful when installation has more than one TCP/IP stack

running)

• HWTH_OPT_LOCALIPADDR – Optional outgoing local IP address

• HWTH_OPT_LOCALPORT – Optional outgoing local port

• Definitions also useful especially when security definitions are in place for

specifically defined addresses and ports
• Application limited by existing security profiles and definitions that are already in effect on the

system where the application resides.
• z/OS Communications Server NetAccess, in conjunction with security profiles defined using the SERVAUTH class, can be used

to control network access authority, TCP/IP stack access authority, port access authority, and more.

26

HTTP Services – Proxy Options

• HWTH_OPT_PROXY – set the HTTP proxy to user.

Specified the exact same as HWTH_OPT_URI above.

• HWTH_OPT_PROXYPORT – specify the proxy port to

connect to. Specified the exact same as

HWTH_OPT_PORT above

27

Setting other connection options

• HWTH_OPT_SNDTIMEOUTVAL – Sending timeout value

• HWTH_OPT_RCVTIMEOUTVAL – Receiving timeout value

• HWTH_OPT_HTTP_VERSION – which version of HTTP do you want to use

over this connection
• HTTP_VERSION_NONE

• HTTP_VERSION_1_0

• HTTP_VERSION_1_1

28

HTTP Services – SSL Options

• SSL support options include:
• HWTH_OPT_USE_SSL – tells toolkit to attempt SSL negotiation explicitly

• HWTH_OPT_SSLVERSION – sets the SSL versions to be supported by this HTTP request. More than one version may

be selected. (e.g. TLS1.2, TLS1.1, TLS1.0, SSLv3)

• HWTH_OPT_SSLKEYTYPE – Specifies the manner the key will be supplied to this HTTPS request. The following

constants are provided:
• SSLKEYTYPE_KEYDBFILE – key store is specified key database file

• SSLKEYTYPE_KEYRINGNAME – key store is a security product managed keyring.

• HWTH_OPT_SSLKEY – Specifies the value of the key. The value specified depends on the value set by SSLKEYTYPE.

• For SSLKEYTYPE_KEYDBFILE - represents path and name of the key database file name

• For SSLKEYTYPE_KEYRINGNAME – represents the SAF key ring name or PKCS#11 token

• HWTH_OPT_SSLKEYSTASHFILE – specifies the stash file of the key database file. Only valid if

SSLKEYTYPE_KEYDBFILE is specified. Ignored in all other cases.

• HWTH_OPT_SSLCLIENTAUTHLABEL – optional label that represents a client certificate if SSL client authentication is

requested by the server.

29

HTTP Services – Redirect Options

• Redirect options include:

• HWTH_OPT_MAX_REDIRECTS – maximum number of redirects to follow for a given

request.

• HWTH_OPT_XDOMAIN_REDIRECTS – are cross-domain redirects allowed?

• HWT_OPT_REDIRECT_PROTOCOLS – do you allow the HTTP/HTTPS protocol to be

upgraded and/or downgraded on a redirect?

30

HTTP Services – Cookie Options

• Cookie support options include:

• HWTH_OPT_COOKIETYPE – sets cookie handling type

• COOKIETYPE_NONE – cookie engine not activated

• COOKIETYPE_SESSION – cookie engine enabled – cookies automatically sent, but end when

connection ends

• COOKIETYPE_PERSIST - cookie engine enabled – cookies automatically sent, cookies saved to output

buffer when connection endsin

• HWTH_OPT_COOKIE_INPUT_BUFFER – specifies input cookie data store

• HWTH_OPT_COOKIE_OUTPUT_BUFFER – specifies output cookie location for a

cookietype of COOKIETYPE_PERSIST

31

Example of establishing a connection

• Initialize a connection (HWTHINIT)

• Set one or more connection options (HWTHSET)

• Connect to the web server (HWTHCONN)

32

HTTP Request Details

33

What resource and parameters do I want to

invoke?

•REST API specification details the location where the

request must target

•Here are some examples:
• Google® Maps Directions API specifies:

• https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters

• Yelp® Search API specifies:

• http://api.yelp.com/v2/search?searchParms

• FAA Airport Service API specifies:

• http://services.faa.gov/airport/status/airportCode

https://maps.googleapis.com/maps/api/directions/outputFormat?paramaters
http://api.yelp.com/v2/search?searchParms
http://services.faa.gov/airport/status/airportCode

34

Format of a URI (URL) in the world of HTTP

A Uniform Resource Identifier (URI) is the way a REST API is represented. A simplified syntax of a
URI is:

scheme://host[:port] [/]path[?query][#fragment]

|----------------------------------| |---|

where and how to connect? what is the particular request?

Connection portion of URI Request portion of URI

scheme – HTTP (unencrypted) or HTTPS (encrypted) (optional)

host – hostname or IPv4 or IPv6 address (e.g. www.ibm.com)

port – an optional destination port number (80 is default for HTTP scheme, 443 for HTTPS scheme)

path – an optional hierarchical form of segments (like a file directory) which represents the
resource to perform the HTTP request method against

query – an optional free-form query string to allow for the passing of parameters

fragment – an optional identifier providing direction to a secondary resource

http://www.ibm.com/

35

Setting request path, input parameters,

method

● HWTH_OPT_URI (required) – The name or resource (URN path portion) of the
URI. The query and fragment portions of a URI may also be present.

– Examples:

● /systems/z/

● /over/here?name=abc#frag1

● HWTH_OPT_REQUEST (required) – which HTTP CRUD request method
does the request want to use

– HWTH_HTTP_REQUEST_GET

– HWTH_HTTP_REQUEST_PUT

– HWTH_HTTP_REQUEST_POST

– HWTH_HTTP_REQUEST_DELETE

36

HTTP Services – Chunked encoding

■ Responses with chunked encoding present
• Toolkit supports the chunked encoding data transfer method (Transfer-

encoding: chunked).

• Automatically de-chunks data sent from the server using the chunked

encoding method.

• The response body exit does not need to handle the various chunks; rather, the data is

delivered to the exit already decoded.

• If the chunked data contains trailer headers, the header exit will be invoked (once for

each trailer header) prior to this routine receiving control.

• Note: The toolkit ignores chunk extensions

37

Other HTTP request options

● HTTP authorization options:

– HWTH_OPT_HTTPAUTH – Do I want HTTP basic client authentication?

– HWTH_OPT_USERNAME and HWTH_OPT_PASSWORD must be set if basic client authentication is

selected.

● HTTP request body and response body translate functions

– HWTH_OPT_TRANSLATE_REQBODY – translate request body from EBCDIC to ASCII automatically.

– HWTH_OPT_TRANSLATE_RESPBODY – translate response body from ASCII to EBCDIC

automatically.

38

Example of establishing a request

• Initialize a request (HWTHINIT)

• Set one or more request options (HWTHSET)

• Send the request to the web server (HWTHRQST)

39

Example of initializing a request

HandleType = HWTH_HANDLETYPE_REQUEST

address hwthttp "hwthinit ",

"ReturnCode ",

"HandleType ",

“ReqHandle ",

"DiagArea."

• A request instance has been created.

• As many request instances as you would like can be created

• A request is married with a connection at the HWTHRQST API call

40

Example of setting some request options

/**/

/* Set HTTP Request method. */

/* A GET request method is used to get data from the server. */

/**/

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_REQUESTMETHOD ",

"HWTH_HTTP_REQUEST_GET ",

"DiagArea."

***/

* Set the request URI */

* Set the URN URI that identifies a resource by name that is */

* the target of our request. */

***/

requestPath = '/airport/status/'||airportCode

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_URI ",

"requestPath ",

"DiagArea."

• All the request options can be set before issuing the HWTHRQST service

• Once the request is completed, the request options can be altered if desired before next send request service.

41

Example of setting a request header

• After the first HWTH_SLST_NEW function, specify HWTH_SLIST_APPEND to

add more headers to the SLST if desired.

acceptJsonHeader = 'Accept:application/json'

/**

/* Create a brand new SList and specify the first header to be an *

/* "Accept" header that requests that the server return any response *

/* body text in JSON format. *

/**

address hwthttp "hwthslst ",

"ReturnCode ",

"ReqHandle ",

"HWTH_SLST_NEW ",

"SList ",

"acceptJsonHeader ",

"DiagArea.“

/***/

/* Set the request headers with the just-produced list */

/***/

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_HTTPHEADERS ",

"SList ",

"DiagArea."

42

Example of setting more request options

• When the HWTHRQST service completes, the response body will be in EBCDIC.

/**/

/* Tell the toolkit to translate the body from ASCII to EBCDIC */

/**/

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_TRANSLATE_RESPBODY ",

"HWTH_XLATE_RESPBODY_A2E ",

"DiagArea."

/***/

/* Set the variable for receiving response body */

/***/

say 'Set HWTH_OPT_RESPONSEBODY_USERDATA for request'

address hwthttp "hwthset ",

"ReturnCode ",

"ReqHandle ",

"HWTH_OPT_RESPONSEBODY_USERDATA ",

"ResponseBody ",

"DiagArea."

43

Example of finally issuing the REST API call

/***********************************/

/* Call the HWTHRQST toolkit api. */

/***********************************/

address hwthttp "hwthrqst ",

"ReturnCode ",

"ConnHandle ",

"ReqHandle ",

"HttpStatusCode ",

"HttpReasonCode ",

"DiagArea."

• When this API call completes, the request and response have also completed.

The final status of the call is returned in the HttpStatusCode (eg. 200) and

HttpReasonCode (eg. “OK”)

• Non-REXX
• Header and Response body exits have already been driven

• REXX
• Response Header and Response body variables can be consulted

• A reset or terminate of the request will wipe out any set values

44

z/OS Client Toolkit HTTP Language Support

Include files and sample programs provided in:

•C

•COBOL

•PL/I

•Assembler (Include file only)

•REXX
•sample delivered via APAR OA50659 on V2R1 and V2R2

45

New REXX support details

46

New REXX Host Commands for Toolkit

•Two new host command environments available in REXX
• HWTJSON

• HWTHTTP

•Runs in the following REXX environments:
• TSO

• ISPF

• System REXX

• z/OS UNIX

• ISV-provided REXX environments

•How to get the host command environment
• V2R3 and higher (non-ISV-provided environments)

• host command environments built-in

• V2R2 and lower (and ISV-provided environments on any release)

• Host command environment dynamically added by adding hwtcalls(‘on’) to the REXX exec

47

Toolkit REXX Support general syntax

• HTTP enabler syntax

address hwthttp 'service_name returncode service_args... diagnostic_stem.'

• z/OS JSON parser syntax

address hwtjson 'service_name returncode service_args... diagnostic_stem.'

• Host command return code (special variable rc in REXX) should be 0
• >0 toolkit service not called, verify command arguments

• <0 probably an abend code, service may or may not have been called

• The HTTP enabler require z/OS UNIX signals.

• May wish to issue call syscalls ‘SIGOFF’ depending on your environment

48

New REXX-only toolkit services

• HWTCONST (get toolkit constants)

• Initializes pre-defined variables in the current REXX variable pool

• Useful for using the symbolic names as defined in the documentation (such as checking for return

codes, setting a particular option, etc..)

• address hwthttp ‘hwtconst returnCode diag.’

• The variable HWT_CONSTANTS is set to a string containing the names of all the variables set
• Useful for procedures to expose names (procedure x expose(hwt_constants))

• HWTJESCT (encode/decode escape sequences in JSON text)

• Transforms non-conforming JSON text (not properly escaped) into conforming JSON text

(encode). Decode does the reverse.

• address hwtjson ‘hwtjesct returnCode func srcTxt trgTxt diag‘

• Where func is either HWTJ_ENCODE or HWTJ_DECODE

49

Toolkit service not available in REXX

• HWTJGNUV (get number value)

• REXX has no concept of integers or floating point numbers

50

HandleType = HWTH_HANDLETYPE_CONNECTION

address hwthttp "hwthinit ",

"ReturnCode ",

"HandleType ",

“ConnectHandle ",

"DiagArea."

• A connection instance has been created.

• More than one connection can be initialized per address space (if the user has set his

dubbing defaults to dub process)

• But only one connection can be active at a time in an MVS task (Setup MVS Signals

only allows one signal setup to be allowed per process)

Example how to init HTTP connection in REXX

51

/***/

/* Set URI for connection to the Federal Aviation Administration (FAA) */

/***/

ConnectionUri = 'http://services.faa.gov'

ReturnCode = -1

DiagArea. = ''

address hwthttp "hwthset ",

"ReturnCode ",

"ConnectHandle ",

"HWTH_OPT_URI ",

"ConnectionUri ",

"DiagArea."

/** */

/* Set HWTH_OPT_COOKIETYPE */

/* Enable the cookie engine for this connection. */

/* Any "eligible" stored cookies will be resent to the host on subsequent */

/* interactions automatically. */

/**/

ReturnCode = -1

DiagArea. = ''

address hwthttp "hwthset ",

"ReturnCode ",

"ConnectHandle ",

"HWTH_OPT_COOKIETYPE ",

"HWTH_COOKIETYPE_SESSION ",

"DiagArea."

Example how to set connection options in REXX

52

/**********************************/

/* Call the HWTHCONN toolkit api */

/**********************************/

ReturnCode = -1

DiagArea. = ''

address hwthttp "hwthconn ",

"ReturnCode ",

"ConnectHandle ",

"DiagArea."

• The connection stays persistent from a toolkit perspective

• Timed-out connections (sockets) will automatically be reconnected at the time of a request if

necessary

• A disconnect, reset or terminate of the connection will disconnect the established connection

Example showing connecting to HTTP server in REXX

53

Processing HTTP Response Headers in REXX

● All HTTP response headers are optionally stored in a REXX stem variable

• Set the HWTH_OPT_RESPONSEHDR_USERDATA option to the name of the stem variable.

● Upon return from the HWTHRQST (send request service), the following

information is returned regarding the response headers received:

• the number of response headers received is stored in the .0 stem

• the name of each response header is stored in the stemname.x stem variable, where x is the from 1

to the number of response headers received.

• the value for each response header is stored in the stemname.x.1 stem variable, where is x is from

1 to the number of response headers received.

54

● The main data sent on a PUT or POST method to an HTTP REST

server is usually sent in the request body

● Set the HWTH_OPT_REQUESTBODY option with the simple name of

the variable which contains the request body.

Sending a Request Body in REXX

55

● The main data returned from an HTTP REST server is usually sent as

the response body

● Set the HWTH_OPT_RESPONSEBODY_USERDATA option with the

simple name of the variable which will hold the response body data.

● REXX limitation of 16Mb applies for max response body to be received

in REXX

Receiving the Response Body in REXX

56

New HTTP Streaming Support

57

Why HTTP Streaming?

• A matter of size
• HTTP protocol has no limit on body size

• Either body may be “very” large

• What if a body is so large that it is not feasible to hold it in memory at a given point

in time?

• Awareness of body size
• HTTP protocol allows for cases when body size is known, allowing its transfer “all

at once”

• What if the body size is not known up front?

• HTTP protocol allows for a body to be transferred as an ordered sequence of

pieces (“gradually”), allowing for the end of the body to be

discovered/conveyed.

• Transparency
• Does a user want to understand and handle metadata artifacts which might be

required by a gradual body transfer?

• Can the toolkit (user agent) efficiencies be improved?

58

HTTP Enabler capabilities before/after streaming

• Before
• “all at once” Request/Response Body (moderate size)

• “gradual” Response Body (moderate size)

• Toolkit is inefficient in its processing of gradual (chunk-encoded) Response

Bodies

• De-chunks in place using a “repeated-shift-left” approach

• Not suitable for larger body sizes

• After
• “gradual” Request Body (any size)

• “all at once” Response Body (of arbitrarily large size)

• “gradual” Response Body (of arbitrarily large size)

59

Sending HTTP Streaming Use Case

• Need to send an arbitrarily large piece of data to the server (as a request body)

• Cannot hold all of the data at once in storage

• Want to spoon-feed moderate-sized pieces of the data to the toolkit

• Toolkit can chunk-encode it on my behalf (if necessary) as part of the transfer

User needs to:

• Give the data pieces to the toolkit in order

• Wants flexibility to provide them at varying addresses

with varying sizes (since that is how they may be made

available to the user)

• Indicate “that’s all of my data” to the toolkit

• Tell the toolkit to cancel the remainder of any in-progress

send

• Be notified by the toolkit if anything goes wrong along the

way

60

Receiving HTTP Streaming Use Case

• Need to receive an arbitrarily large piece of data from the server (as a response body)

• May not be able to hold all of the data at once in storage

• Size may be unpredictable

• Want the toolkit to spoon-feed the application moderate-sized pieces of the data

• Data should be devoid of any chunk-encode metadata which the toolkit may have

encountered during transfer

User expects to:

• Receive the pieces in order and efficiently written directly

into the user’s buffers

• Wants flexibility to provide the buffers at varying

addresses with varying sizes

• Be indicated by the toolkit “that’s all of my data”

• Tell the toolkit to cancel the remainder of any in-progress

receive

• Be notified by the toolkit if anything goes wrong along the way

61

Usage of HTTP Streaming (Send to server)

• New Streaming Send Exit option settable by HWTHSET
• If valid exit address is set for HWTH_OPT_STREAM_SEND_EXIT, streaming send

will be in effect

• New Streaming user data option settable by HWTHSET
• Set HWTH_OPT_REQUESTBODY_USERDATA to provide exit with an optional buffer

of user data to be passed to the streamed send callback routine.

• The toolkit will drive the streaming send exit in a loop to process the data
• Send exit will specify:

• address and length of the data buffers to be sent

• a status value to communicate the state of the data being sent

62

Usage of HTTP Streaming (Receive from server)

• New settable options for Streaming Receive exit and Streaming Receive exit

user data
• Note that the HWTH_OPT_STREAM_RECEIVE_EXIT is mutually exclusive with the

existing HWTH_OPT_RESPONSEBODY_EXIT option.

• The toolkit will drive the streaming receive exit in a loop to process the data
• Receive exit will specify:

• address and length of the data buffers to be populated by the data received

• a status value to communicate the state of the data being received

• Receive exit is notified when all the data has been received

63

Miscellaneous Streaming Notes

• No REXX support for streaming

• Data moves minimized as much as possible

• In some cases, the data is written directly from the socket to the user

buffer.

• Vector list required by Streaming Send exit compatible with the readv() z/OS

XL C/C++ library function (Read data from a file and store into a set of buffers)

• Vector list returned in Streaming Receive exit compatible with the writev()

z/OS XL C/C++ library function (Write data from a set of buffers into a file)

64

Streaming samples

• New streaming samples now available

• C and COBOL examples provided

• Illustrate sending a file to a well-known HTTP server and receiving it back

• Available via APAR OA53922 on V2R3

65

AT-TLS / Toolkit Interoperability Support

66

HTTP Services – AT-TLS / Toolkit

Interoperability

•Application Transparent – TLS is basically stack-based TLS
• TLS process performed in TCP layer (via System SSL) without requiring
any application change (transparent)

• AT-TLS policy specifies which TCP traffic is to be TLS protected based on a
variety of criteria

• Local address, port
• Remote address, port
• z/OS userid, jobname
• Time, day, week, month

•Gives network administrators greater control over the security
requirements of network applications rather than individual
applications

67

HTTP Services – AT-TLS / Toolkit

Interoperability

•Toolkit is now AT-TLS aware (with APAR OA50957 installed)

• Application does not specify SSL/TLS options directly within toolkit

application?
• AT-TLS policy upgrades connection to SSL/TLS?

• Toolkit will treat the requests over this connection as HTTPS requests

• All cookies and redirect processing will be now operate as an HTTPS request.

• AT-TLS policy does not upgrade connection or no policy in effect?
• Business as usual. Request will operate as HTTP

• Application specifies SSL/TLS directly within toolkit application?
• AT-TLS policy upgrades connection to SSL/TLS?

• Toolkit rejects the request. Network configuration and application are in conflict.

• AT-TLS policy does not upgrade connection or no policy in effect?
• Business as usual. SSL/TLS credentials will be specified by the application. If successful

handshake, then request will operation as HTTPS.

68

Enhanced HTTPS Functionality

69

New SSL Cipher Specs support

• When a secure connection is established, the client and server negotiate the

cipher to use for the connection (RFC5246). These ciphers help determine how

the data will be encrypted and decrypted.

• The web server has an ordered list of ciphers, and the first cipher in the list that is

supported by the client is selected.
• New HWTH_OPT_SSLCIPHERSPECS option allows the application to specify a list

of 4-character cipher definitions

• Should be ordered by preference of use
• Requires HWTH_OPT_USE_SSL option to be set to HWTH_SSL_USE

(application-initiated SSL connection)

• Allows the client application to replace the default list of acceptable cipher

specifications with its own list

• Available in APAR OA53546 on V2R1 and higher

70

New SSL TLS 1.2 optimization support

• Full TLS/SSL handshake (prior to TLS 1.2)

• High latency

• Two round-trips required

• Expensive computation to exchange keys or sign and verify certificates

71

New SSL TLS 1.2 optimization support

• Abbreviated (short) handshake (TLS 1.2)
• The full handshake is required at least once.

• The full handshake results in server sending a session ID back to the client.

• This ID is cached on the server and by the toolkit (client-side)

• If new request is made to the same server and the connection is no longer there,

the toolkit attempts to send this cached session ID as part of the new handshake.

• If the server accepts this session ID, the server quickly completes the handshake, bypassing most of

the full handshake steps.

• If the server does not accept the session ID, a full handshake will result.

SSL Client SSL Server
Client “Hello” (1)
+Session ID

Verify Session

ID (if required) (2)

Server “Hello”

Change CipherSuite

Finished (3)

Change CipherSuite

Finished (4)

Exchange Messages (5)

72

New SSL TLS 1.2 optimization support …

• Available on z/OS V2R2 and higher

• Requires APAR OA53546 to be installed for application-

initiated SSL connections

• The toolkit will use the abbreviated handshake whenever it

is possible to resume a previously established secure connection.

• Connections using AT-TLS can also avail themselves of this optimization

automatically when running on V2R2 or higher

• Toolkit optimization will only be available if a connection has not been

disconnected. Use cases include:

• A server times out a connection. A request is then attempted over this timed-

out connection.

• A server sends a Connection Closed response header (or fails to specify

Keep-Alive (HTTP 1.0)). A request is then attempted over this closed

connection.

73

HTTP Tracing Output to a DD

74

New HTTP tracing to DD support

• New HWTH_OPT_VERBOSE_OUTPUT option allows specification of a DD where

HTTP trace output is to be directed
• Used in conjunction with the existing HWTH_OPT_VERBOSE option

• The DD name above must represent either:

• a pre-allocated traditional z/OS data set which is a physical sequential

(DSORG=PS) with a record format of unblocked variable (RECFM=V) or

Undefined (RECFM=U) and expandable (non-zero primary and secondary

extents). The DD must also specify a DISP=OLD disposition.

• a zFS or HFS file.

t: An error occurred: Certificate validation error

t: Reason code: 8

t: Return code: -1

t: Service: 22

t: Service Instance: 0

75

New HTTP tracing to DD support

address hwthttp "hwthset ",

"ReturnCode ",

"ConnHandle ",

"HWTH_OPT_VERBOSE ",

"HWTH_VERBOSE_ON ",

"DiagArea."

traceDD = ‘MYTRACE’

/* Allocate the data set here */

address hwthttp "hwthset ",

"ReturnCode ",

"ConnectionHandle ",

"HWTH_OPT_VERBOSE_OUTPUT ",

"traceDD ",

"DiagArea."

• When a connect, sendRequest or disconnect are issued, detailed trace will be

written to the data set specified by the MYTRACE DD.

76

JSON parsing performance improvements (large streams)

77

Parsing performance improvements for very

large JSON

• No external changes.

• Very large JSON text streams parse much faster (HWTJPARS) than

before
• z/OS JSON parser much smarter about the management of the internal JSON mapping of

the JSON text stream.

• For very large JSON bodies, the internal representation can now span multiple obtained

storage areas.

• Creating new JSON entries (HWTJCREN) occur significantly faster
• The insertion point for adding an new entry to an object or array is learned significantly

faster than before, making insertion orders of magnitude faster than before when there are

many entries already in the object or array.

78

Support for HEAD HTTP Request Method

79

Support for HEAD request method

• The HEAD method is identical to GET except that the server does

not return a message-body in the response. The metadata contained

in the HTTP headers in response to a HEAD request will be identical

to the information sent in response to a GET

• HWTHSET can now be invoked using a new constant value
HWTH_HTTP_REQUEST_HEAD for setting the

HWTH_OPT_REQUESTMETHOD option.

80

Where to go for more z/OS Client Web Enablement Toolkit

information

81

• Writing a z/OS application leveraging REST APIs

• Friday, August 11th, 8:30am, Room 557

• Learn how to write a couple of simple applications which leverage

REST APIs

• Learn the basic functions of the toolkit

• Learn how to debug a few common problems encountered when

invoking a REST API

Come to the SHARE Lab

82

• z/OS 2.2 MVS Programming: Callable Services for High-Level

Languages

• Complete toolkit documentation

• z/OS 2.2 MVS System Messages, Volume 6 (GOS – IEA)
• Toolkit message documentation

• z/OS 2.2 MVS System Codes
• Toolkit abend ’04D’x documentation

Toolkit Reference Materials

83

• mainframeinsights.com

• Search for toolkit

84

• IBM Systems

Magazine (January /

February 2016)

• z/OS Client Web

Enablement Toolkit

Enhances Web

Application

Availability (pg 34 -36

in hardcopy edition)

85

• z/OS Hot Topics

magazine (August

2015)

• REST easy on z/OS

– Introducing the

z/OS Client Web

Enablement Toolkit

(pg. 26-27)

86

Questions?

