
6/30/2021

1

1

2021 Edition

Presenter: Charles Mills
Charles Mills Consulting, LLC
charlesm@mcn.org

2

Abstract

Starting with z/OS V2R3, IBM is no longer shipping “standard”
certificate-authority (CA) certificates with RACF, putting more
responsibility on you to understand and manage certificates on your
own. You may have attended other sessions that have shown how to
install a certificate in RACF, ACF2 or TSS. This session will give you an
understanding of how the certificate process actually works under
the covers. It is equally relevant to RACF, ACF2 and TSS systems.

The session will start with a quick review of the underlying
technologies and their limitations in the absence of certificates:
secret key, public key, and digital signatures and hashes; and go on to
cover in detail the protocol flows with server certificates,
intermediate certificates, CA certificates and revocation lists. Finally
the session will introduce you briefly (with resources for further
learning) to advanced topics such as Alternative Names, client
certificates, elliptic curve, Diffie-Hellman, code signing, and more.

It is “pure” certificate and SSL/TLS technology. If you are looking to
understand what is inside a certificate you are in the right place.

mailto:charlesm@mcn.org

6/30/2021

2

3

About the Presenter

Charles has been writing mainframe
software for longer than he cares to admit.
He developed security software for eight
years at CorreLog, where he authored the
zDefender and SyslogDefender products
which were acquired by BMC. He is currently
the Chief Development Officer for Cloud
Compiling and also does freelance project-
oriented development.

He has a PhD in certificate technology from
the University of Hard Knocks.

4

The University of Certificate Hard Knocks

Windows product

• My introduction to the nitty-gritty of certificates

• Implements both client and server ends of TLS protocol

• Built using OpenSSL

• Open Source – “lightly” documented – forces one to learn as
one goes

• Result can be “the most dangerous code in the world”
https://bit.ly/2Djr76W

z/OS product

• Built using IBM z/OS System SSL (“GSK”)

• Designed to force you not to make mistakes

• Highly recommended

https://bit.ly/2Djr76W

6/30/2021

3

5

Why Certificates?

“Just a file”

Automate security for remote connections

• Authentication: is this site really who it says it is?

• Encryption for data traffic

• For Web, FTP, TN3270 and potentially any similar connection

Authenticate users: is she really who she says she is?

Authenticate e-mail: is this e-mail really from the
supposed sender, and how do I know it has not been
altered?

Guarantee that software has not been tampered with
since it left the publisher

6

Man in the Middle Attack

Without
SSL/TLS and
certificates!

Stores bank
encryption key and

substitutes own

M
odified session traffic encrypted w

ith bank key
Decrypts, stores,
modifies and re-
encrypts session
traffic as desired

Bank encryption key M
IT

M
’s

ow
n e

ncr
yp

tio
n ke

y

M
odifi

ed
 se

ss
io

n tr
af

fic
 e

ncr
yp

te
d w

ith
 M

IT
M

 k
ey

Bank Customer

Man in the Middle
(MITM)

6/30/2021

4

7

Brief history of SSL and TLS (“SSL/TLS”)

1994: Netscape, first company to commercialize the Internet,
perceives browser communication not secure enough for
e-commerce

1994: Develops Secure Sockets Layer (SSL) version 1 (never
released)

1995 and 1996: SSL versions 2 and 3 (both now deprecated)

1998: Netscape crashes and burns in Microsoft browser wars

1999: SSL v3 becomes IETF Transport Layer Security (TLS) v1.0

TLS now at Versions 1.2 and 1.3. TLS 1.3 was defined in RFC 8446
in August 2018.

Certificates are a fundamental component of SSL/TLS

http://bit.ly/2DCRGiY
http://bit.ly/2DkGmus

8

Agenda

100 MPH review of underlying
technologies

• With links for additional reference

Details of the certificate protocol flow

100 MPH introduction to some advanced
features

• With links for additional reference

Reference links for more information

AlphaCoders.com

http://bit.ly/2DCRGiY
http://bit.ly/2DCRGiY
http://bit.ly/2DkGmus
http://bit.ly/2DkGmus

6/30/2021

5

9

10

Secret (Symmetric) Key Encryption

The quick
brown fox
jumps over
the lazy
dog

Encrypt

O5dsy3avq
rtb2vwqhy
hjylhhrc5x
kpt4cqog+
+ujmp

O5dsy3avq
rtb2vwqhy
hjylhhrc5x
kpt4cqog+
+ujmp

Transmit

Decrypt

The quick
brown fox
jumps over
the lazy
dog

Same key

http://bit.ly/2iIor54

Write/read

or

Cleartext Ciphertext Cleartext Ciphertext

http://bit.ly/2iIor54

6/30/2021

6

11

Secret Key Encryption

What’s the big problem?

Key Management

• How do we get that secret key from one end to the other?

• How do we keep track of thousands of individual secret keys?

• Chase Bank has 4 million customers

?

12

Cleartext Ciphertext Cleartext Ciphertext

Public Key (Asymmetric) Encryption

The quick
brown fox
jumps over
the lazy
dog

Encrypt Transmit Decrypt

The quick
brown fox
jumps over
the lazy
dog

Key generation
software

Public key

http://bit.ly/2i05WvQ

Private key

Q2uqh3ajl
eee0mcbt
wprnqxha/f
1bqay2och
mgnom

Q2uqh3ajl
eee0mcbt
wprnqxha/f
1bqay2och
mgnom

http://bit.ly/2i05WvQ

6/30/2021

7

13

Cleartext Ciphertext Cleartext Ciphertext

Public Key (Asymmetric) Encryption

The quick
brown fox
jumps over
the lazy
dog

Encrypt

Q2uqh3ajl
eee0mcbt
wprnqxha/f
1bqay2och
mgnom

Q2uqh3ajl
eee0mcbt
wprnqxha/f
1bqay2och
mgnom

Transmit Decrypt

The quick
brown fox
jumps over
the lazy
dog

Key generation
software

Public key

http://bit.ly/2i05WvQ

Private key

14

My Public Key

Public-Key: (2048 bit)

Modulus:

00:ad:3d:3a:cf:fd:39:8f:b0:d9:6d:8e:27:ad:37:

c7:74:a2:b3:7a:05:b0:de:f9:06:96:f7:c6:a1:16:

d5:2b:39:28:30:d2:63:3c:96:f5:3e:d1:9f:9b:9a:

1f:3e:29:71:be:7d:6b:c3:a3:90:de:ce:41:b0:e8:

5d:fe:ce:05:0d:d5:55:7f:fa:58:df:3b:5b:25:98:

8e:cb:c2:d1:6e:0d:be:44:88:87:9f:b1:a0:cf:de:

ae:7d:e3:fd:d1:81:64:2b:48:f1:7a:83:d7:e9:66:

9f:32:3a:9a:26:d5:41:50:3e:8a:a4:9c:18:9a:c1:

21:ea:9b:b5:23:b1:57:27:55:e0:85:a0:d6:0e:c4:

3b:ea:8e:03:b7:4e:28:e0:c8:57:de:db:fe:a4:dc:

32:11:09:aa:d8:6d:04:e0:f6:d5:e2:08:c4:87:30:

29:3a:bd:0f:2b:45:7d:b8:6e:8c:71:22:ff:8c:3c:

68:7d:64:87:f7:87:a5:66:2c:d2:71:e2:97:84:48:

26:82:58:e4:0b:d6:59:e3:57:0a:07:24:77:e3:39:

3a:07:04:f6:ac:23:e1:33:28:ba:f3:5b:7c:df:91:

27:a4:79:a1:e5:6c:e9:c7:23:74:81:a7:cc:7f:75:

c4:9e:d4:7e:27:af:23:9f:32:87:2e:f1:87:e7:38:

0f:31

Exponent: 65537 (0x10001)

But absolutely imperative to keep that private key private!

http://bit.ly/2i05WvQ

6/30/2021

8

16

Public Key Encryption

What are the big problems?

Keys are HUGE! As you saw on the previous slide

• 4096 bits is over 1200 decimal digits

• Essence of public key is the difficulty of factoring huge numbers

Need a program to generate a pair of keys

Key management (are you noticing a theme?)

Unidirectional

Very slow

Don’t say Mills said Public Key was no good – we will see
how certificates solve all of these problems

18

Function that takes a possibly very long
“message” and returns a relatively short fixed-
length binary value

Must be relatively easy to calculate

Deterministic: same message yields same hash

Possible but highly unlikely two slightly
different messages have same hash

Almost impossible to construct a message with
a predictable hash

Same hash = same message

Also called message digest

Examples: SHA-2 (MD5, SHA-1)

Digital Hash

Source: Wikipedia
By User:Jorge Stolfi based on Image:Hash_function.svg by Helix84 - Original work for Wikipedia,
Public Domain, https://commons.wikimedia.org/w/index.php?curid=5290240 http://bit.ly/2mNgIor

Message Resulting Hash or Digest

http://bit.ly/2mNgIor
http://bit.ly/2mNgIor

6/30/2021

9

19

Digital Signatures

Public key in reverse: encrypt
hash with private key, decrypt
with public key

Verifies message not tampered
with: any change to message
would change the hash

Authenticates: only owner of
private key could have signed
(encrypted)

Non-repudiation: only owner of
private key could have sent

http://bit.ly/2rTHa54

Certificate,
e-mail, etc.

“Message”

Digital
Hash

“Message”

Certificate,
e-mail, etc.

Digital
Signature

C
o

m
p

u
te

Encrypt

Sender’s
Private Key

Decrypt

Sender’s
Public Key

Digital
Hash

Digital
Hash

Verify Equal

Sender Receiver

“Message”

Digital
Signature

Transmit

Compute

Public/Private Key Pair

20

Digital Signatures and Trust

You receive a “message” (could be anything) purportedly
from me with an attached digital hash encrypted with
some private key. You also compute your own digital hash
for the message.

If you can decrypt the attached digital hash with my
public key (well known) and it is the same as the digital
hash you computed, then the message is from me and is
unaltered. If you trust me then you can trust the
message.

By extension, if the message contains a public key,
then you can trust any message signed with that
public/private key pair.

This – the “chain of trust” – is the essence of certificates.

http://bit.ly/2rTHa54
http://bit.ly/2rTHa54

6/30/2021

10

21

Certificate Authority

Company or group within a company that issues certificates

Uses self-created “root” certificate to sign them

May be well-known CA

• IdenTrust (owned by 8 large banks)

• DigiCert (20% market share)

• Comodo Sectigo (17% market share)

• Symantec (acquired Verisign*; CA business sold to DigiCert)

• GoDaddy

• GlobalSign

• Entrust*

• Let’s Encrypt – Free! Highly automated. Transparent (public log). Ninety days only!

Or department or individual

Well-known CA required for public-use SSL/TLS

*CA Certificates that formerly
shipped with RACF. IBM also shipped
Thawte, acquired by Verisign
(acquired by Symantec, acquired by
DigiCert).

http://bit.ly/2oK0ugM

22

Client and Server

Nothing to do with color or size
of boxes

Often software, not hardware

The predominant architecture for
complex applications (Web
browser, FTP, e-mail, 3270
emulation)

http://bit.ly/2DjfNWk

Server

Waits for Requests
from Clients and

Responds

Client

Initiates
Requests and

Waits for
ResponseClient

Initiates
Requests and

Waits for
Response

Client

Initiates
Requests and

Waits for
Response

Client

Initiates
Requests and

Waits for
Response

http://bit.ly/2oK0ugM
http://bit.ly/2oK0ugM
http://bit.ly/2DjfNWk

6/30/2021

11

23

24

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client initiates connection to server*

Connects to
ftp.YourCo.com
and sends “Client
Hello” with list of
acceptable cipher
suites (& more)

https://bit.ly/2Ukx7V0 *this is the TLS 1.2 and below handshake.
TLS 1.3 more complex but similar.

https://bit.ly/2Ukx7V0
https://bit.ly/2Ukx7V0

6/30/2021

12

25

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Server responds with certificates

Sends “Server
Hello” containing
choice of cipher
suite (& more)
Sends Server
certificate and
Intermediate
certificate(s)

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Certificate

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Server Certificate
• ftp.YourCo.com

Intermediate
Certificate(s)

• Signed by CA

26

Subject Name The URL of the server for which it was issued

Issuer The name of the certificate that signed this one

Serial Number MUST be unique within CA

Effective Dates Start and end date and time

Public Key Half of this certificate’s key pair

Digital Signature Attests to the authenticity of this certificate

What’s in a Certificate?

What’s Never in a Certificate?

Private Key Sometimes packaged with the certificate but
never part of the certificate

https://bit.ly/3m80rXH

https://bit.ly/3m80rXH
https://bit.ly/3m80rXH

6/30/2021

13

27

Formatted certificate content
 Label: CZAGENT_Nov2017_3
 Trusted: Yes
 Version: 3
 Serial number: 21
 Issuer name: Charles Mills Consulting, LLC
 charlesm@mcn.org
 US
 California
 Charles Mills Consulting, LLC
 Subject name: CZAGENT_Nov2017_3
 charlesm@mcn.org
 US
 California
 Charles Mills Consulting, LLC
 Effective date: 2017/11/06
 Expiration date: 2018/11/06
 Signature algorithm: sha512WithRsaEncryption
Public key algorithm: rsaEncryption
 Public key size: 2048
 Public key: 30 82 01 0A 02 82 01 01 00 C1 56 C9 80 74 D7 EB
 ...
 A2 42 5A A0 9F 7E 9E 3F 61 02 03 01 00 01

Serial number

“Common Name” (CN) of issuing CA

Common Name of Subject

Validity dates

Encryption algorithms

Certificate Public Key

Signature (not shown)

Certificate Private Key may be
packaged with the certificate but is
never part of the certificate.

Always safe to transmit the certificate
itself.

Above formatted display produced by IBM System SSL utility gskkyman.
Get a similar display with the OpenSSL utility, which you can freely
download and run on your desktop.

 https://bit.ly/3qh95pO

28

How did the server get that certificate?

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Certificate Signing
Request (CSR)

• ftp.YourCo.com
• Public Key

Certificate Authority

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Certificate

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority Root

• Validates that
requestor owns
ftp.YourCo.com

• Turns CSR into
certificate by
signing with
Intermediate
Certificate

• Generates public/
private key pair

• Creates a “CSR”
• Keeps the private

key secret
• Sends CSR to CA

https://bit.ly/349ci1j
Private Key

https://bit.ly/3qh95pO
https://bit.ly/3qh95pO
https://bit.ly/349ci1j
https://bit.ly/349ci1j

6/30/2021

14

29

The compromise of a CA root key would
render root and all certificates issued by
CA untrustworthy – a disaster!

Certificate Authorities store their root
keys off-line to help prevent compromise

They use medium-term intermediate
certificates – signed by their root
certificate – to issue end-user certificates

Intermediate certificates are signed by
the root certificate: “Chain of trust”

Why Intermediate Certificates?

Source: Wikipedia
By Yanpas - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=46369922

30

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client has CA root certificate pre-installed

Certificate
Authority root

certificate

Contains CA
public key

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Certificate

Intermediate
Certificate

• Intermediate
Authority

• Public Key
• Signed by

Certificate
Authority

Certificate Authority

Server Certificate
• ftp.YourCo.com

Intermediate
Certificate(s)

• Signed by CA

6/30/2021

15

31

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client validates certificate signatures

Verifies Certificate
signatures: Server
with Intermediate
public key,
Intermediate with
root public key, CA
certificate with itself

Certificate
Authority root

certificate

Contains CA
public key

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Certificate

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Server Certificate
• ftp.YourCo.com

Intermediate
Certificate(s)

• Signed by CA

32

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client validates certificate subject name

Verifies subject
name matches
intended URL

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Authority

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Server Certificate
• ftp.YourCo.com

6/30/2021

16

33

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client validates certificate subject name

Verifies subject
name matches
intended URL

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Authority

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Server Certificate
• ftp.YourCo.com

34

Why would a certificate be revoked?

• Issued in error

• Key compromised

• CA root key compromised (disaster!)

Clients should check for server certificate
revocation

• Some clients do not, and some users
ignore the error – bad idea!

Certificate Revocation

6/30/2021

17

35

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Certificate Revocation List (old way)

Checks Certificate
against previously-
downloaded CA
Certificate
Revocation List
(CRL)

Certificate Authority

Certificate
Revocation
List (signed)

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Authority

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Issues:
• Timeliness
• Size (megabytes!)
• Parsing of large list

https://bit.ly/31h3oMM

Server Certificate
• CA name
• Serial number

36

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Online Certificate Status Protocol (new way)

During certificate
validation creates
OCSP query,
sends to CA and
checks response

Certificate Authority

Responds to
OCSP query

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Authority

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Issues:
• Requires full

Internet access
• Burden on CA
• Response time
• Privacy

https://bit.ly/2XwxevE

Server Certificate
• CA name
• Serial number

https://bit.ly/31h3oMM
https://bit.ly/2XwxevE

6/30/2021

18

37

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

OCSP Stapling (newer way)

During certificate
validation checks
“stapled” OCSP
response

Certificate Authority

Responds to
OCSP query

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Authority

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority https://bit.ly/3gzn0RE

OCSP Response
• Time-stamped
• “Stapled” to the

server certificate

Server Certificate
• CA name
• Serial number

OCSP Response
• Time-stamped
• “Stapled” to the

server certificate

38

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client checks certificate validity dates

Verifies
certificate
validity dates

Server Certificate
• ftp.YourCo.com
• Public Key
• signed by

Intermediate
Authority

Intermediate
Certificate(s)

• Intermediate
Authority Name

• Public Key
• Signed by

Certificate
Authority

Some clients or users may
ignore expiration – bad idea:
expired certificates not in CRL

https://bit.ly/3gzn0RE
https://bit.ly/3gzn0RE

6/30/2021

19

39

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Server Key Exchange

Computes random
public/private key
pair and sends public
key to client

Public key

Saves server public
key for Master Secret
Computation

Quality of random number
generation is critical

40

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Client Key Exchange

Computes random
public/private key
pair and sends public
key to server

Public key
Saves client public
key for Master Secret
Computation

6/30/2021

20

41

Client and Server Compute Master Secret

Client and Server each compute a “Premaster Secret”

• Computed from random numbers in Client Hello, Server
Hello, its own private key, and the partner’s public key

• Both parties perform the same computation and should get
the same result (even though different inputs!)

• Length varies depending on cipher suite

Client and Server each derive the same “Master
Secret” from the Premaster Secret

• Always 48 bits

42

Up to Six session keys derived from master secret

Client Write Encryption Key

Client Write Initialization Vector Key (used only for
certain ciphers)

Client Write MAC Key (used for message
authentication)

Server Write Encryption Key

Server Write Initialization Vector Key (used only for
certain ciphers)

Server Write MAC Key (used for message
authentication)

Master Secret

https://bit.ly/3h066OB

https://bit.ly/3h066OB
https://bit.ly/3h066OB

6/30/2021

21

43

Client
3270 emulator,
FTP client, Web

browser, etc.

Server
TN3270, FTP daemon,

Web server, etc.

Data traffic at last!

Encryption Keys Encryption Keys

Session Traffic encrypted/decrypted with Encryption Keys

Session keys refreshed
from time to time

44

Certificates Solve the Crucial Problems

Authentication

Encryption

Secure key delivery

Automation of key delivery

Bi-directionality

Speed

Man in the Middle attack

6/30/2021

22

45

How certificates prevent man in the middle

Stores bank
encryption key and

substitutes own

M
odified session traffic encrypted w

ith bank key
Decrypts, stores,
modifies and re-
encrypts session
traffic as desired

Bank encryption key M
IT

M
’s

ow
n e

ncr
yp

tio
n ke

y

M
odifi

ed
 se

ss
io

n tr
af

fic
 e

ncr
yp

te
d w

ith
 M

IT
M

 k
ey

Bank Customer

Man in the Middle
(MITM)

X
Can’t “see” session secret key

because computed from
private keys (never

transmitted)

Can’t substitute own
certifcate for bank’s because

cannot get certificate for
bank URL

46

Certificate Issues

Certificate Authority Issues

• Sloppiness, fraud?

• Repressive government pressures CA to facilitate Man-in-the-Middle

• Dutch CA DigiNotar hacked; fraudulent Google.com certificate used
for Man-in-the-Middle interception of Iranian citizens
https://bit.ly/3hN1b2n

• Name validation by CA

• Requirement for CA to validate URLs at odds with modern
certificate volumes

• In March of 2017, Google announced Chrome would stop honoring
Symantec certificates for (among other things) sloppiness in
validating certificate names https://bit.ly/2QG5lxd

• Death penalty! Symantec sold CA business to DigiCert

• Any CA can issue a certificate for any site!

Complexity

Certificate management

• Especially expiration

Key management

• Keeping private key private

• But not losing them!

CA Root Certificates and
Trust

https://bit.ly/3hN1b2n
https://bit.ly/2QG5lxd

6/30/2021

23

47

Questions?

More questions?
charlesm@mcn.org

48

mailto:charlesm@mcn.org

6/30/2021

24

49

Self-signed certificates

Misunderstood concept

Self-signing is not inherently bad – all CA root certificates are self-
signed

Means the certificate signs itself, not that the company that issued
the certificate is its own CA

Generally frowned upon for end-point certificates

Provide encryption

Provide authentication only if pre-installed on client

Nothing wrong with your company being its own CA

• Saves money, time and trouble

• Works only for internal clients – external users do not have CA root certificate

• Possibly more secure to control it all yourself

microsoft.com

Source: Wikipedia
By Yanpas - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=46369922

50

Alternative Names

Certificates support multiple “subject alternative
names” (SANs) in addition to the main “common
name”

Thus one certificate could be valid for YourCo.com,
MyCo.com and HerCo.com

Using an Alternative Name for the server URL is now
preferred to Common Name (RFC 2818)

Sometimes called a Multi-Domain or SAN Certificate

CA’s charge more for multiple names but that is a
business issue, not a technical issue

http://bit.ly/2B8AL4Z

http://bit.ly/2B8AL4Z

6/30/2021

25

51

Subject Name Wildcards

Certificates support wildcard subject names (Common
or Alternative)

Asterisk may be last or only character of leftmost sub-
domain name: *.YourCo.Com or w*.YourCo.Com

• Or last dotted address octet: 192.168.17.* (infrequent)

One certificate for www.YourCo.com, ftp.YourCo.com
and mail.YourCo.com

http://bit.ly/2Djbw6g

52

Elliptic Curve Encryption

The problem with RSA encryption

• Principle is that multiplication is fast; factoring is slow

• As computers have gotten faster we have compensated by going
to larger and larger RSA keys

• Problem is that the larger the key, the less the difference in time
between multiplication and factoring – so diminishing returns

Elliptic Curve Encryption too complex for one slide

• Relatively fast to compute a transformation based on an elliptic
curve

• Very slow to reverse that transformation

• Smaller keys give security equivalent to large RSA keys

• Time ratio constant for larger keys
Public domain. Source freesvg.org

https://bit.ly/3d18Jy7

http://bit.ly/2Djbw6g
http://bit.ly/2Djbw6g
https://bit.ly/3d18Jy7
https://bit.ly/3d18Jy7

6/30/2021

26

53

Diffie-Hellman and Forward Secrecy

Perfect Forward Secrecy

• RSA key exchange uses certificate private key to derive encryption key

• Suppose intruder stole server certificate private key

• You could just re-issue the certificate with a new key

• But suppose the intruder had recorded earlier session traffic

• He could now decode it all with his stolen key

• TLS 1.3 prevents by requiring “perfect forward secrecy”

Ephemeral Diffie-Hellman (DHE) Key Exchange

• Client and Server separately compute premaster secret from partner’s
public key and own private key (+ exchanged random numbers)

• They arrive at identical result, but intruder has neither private key and
cannot

• Key is “ephemeral” and used for only the one session

• Hence intruder cannot decode using stolen certificate key
Image credit: Chuck Painter/Stanford News Service

https://bit.ly/3zZuDMm

54

Client Certificates

Server certificate authenticates server identity and provides for
encryption

Client certificate authenticates client identity only

• Does not provide for or configure encryption

• Must be CA-signed or else pre-installed on server

An alternative to passwords

Good choice if relatively small number of clients, over which you
have control

• Good for branch offices, not for customers

Server makes protocol request for certificate from client, so
configuration is a server option

• FTP Example (server-side):
SECURE_LOGIN VERIFY_USER

Validation protocol similar to server certificate

https://bit.ly/3zZuDMm
https://bit.ly/3zZuDMm

6/30/2021

27

56

Code signing with certificates

Verifies that software is authentic

Does not prove that code is good, merely authentic!

Verifies software has not been altered/tampered with

Requires special code-signing software

May be CA-signed or software-vendor signed

Time-stamping

• Allows for fact that certificate may expire after software is
published but before it is installed

Source itcs.com

58

Constraints and Key Usage

Basic constraint

• CA key or not

Key usage

• Signatures

• Etc.

Extended key usage

• Server

• Client

• Code signing

• Email

• Etc.

X509v3 extensions:

 X509v3 Basic Constraints:

 CA:FALSE

X509v3 Extended Key Usage:

 TLS Web Server Authentication,
 TLS Web Client Authentication

http://bit.ly/2B7lZvy

http://bit.ly/2B7lZvy
http://bit.ly/2B7lZvy

6/30/2021

28

59

Summary

Why certificates?

100 MPH review of underlying technologies

• With links for additional reference

Details of the certificate protocol flow

100 MPH introduction to some advanced features

• With links for additional reference

More questions?
charlesm@mcn.org

60

Thank you
More questions?
charlesm@mcn.org

mailto:charlesm@mcn.org
mailto:charlesm@mcn.org

