
GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Addressing the Installation Exits
Problem

Bob Rogers

Trident Services, Inc.

z Exchange

December 8, 2021

Addressing the Installation Exits ProblemAddressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Session abstract

Over 50 years ago IBM allowed installations to customize their systems with assembler language code that runs

as authorized extensions to the operating system. Since then, the underlying system has become more complex,

the understanding of how to interact with the operating system has greatly diminished, the skills in assembler

language have almost vanished, and concerns about the integrity and security of the system have increased.

All these factors lead us to seek a better solution for specifying JCL rules and other installation policies. This

presentation describes a path to eliminating much of the installation exit code that now presents an issue, if not a

threat, to the maintenance and smooth running of z/OS systems.

The big news is a new tool, called Exit Explorer, to identify and locate the active installation exit code on a

system. Once identified, an installation can then re-implement the policy embodied in the assembler code with

non-programming language specifications and retire the customer-written installation exit code. Going forward,

the active policies can be transparently reviewed without having to decipher them from arcane decades old

assembler language code.

The Exit Explorer is available for use from Trident Services free of charge or obligation. The presentation

describes the problem in general terms and goes on to describing a specific solution approach based on examples

using the zOSEM product customization capabilities.

Addressing the Installation Exits ProblemAddressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Customization via Exit Programs

• From the earliest days of the operating system, provision has been
made to customize system operation by augmenting the operating
system with code provided by the installation.

• The operating system and associated products provided exit points
from which installation exit routines are called.

• The installation exit code typically must be written in assembler
language and execute in an authorized state.

• This is to say that an installation must express the JCL rules and other
policies in assembler code, which because it runs in authorized state,
can crash the system.

Addressing the Installation Exits ProblemAddressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Current Concerns

• Even now, 50 years later, a good deal of customization must still be
done using installation exits.

• But the level of skill in assembler language has diminished greatly.

• Worse, the knowledge of operating system internals required for
implementing and maintaining installation exits has nearly vanished.

• The microfiche that was used years ago to learn about the operating
system elements is no longer available (OCO).

• Many installations know little about the exit code that runs on their
critical systems – sometimes not even the inventory of exits.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Why this presentation?

• In the following charts we try to point out the problems of
maintaining installation code to customize z/OS systems – problems
that many of us old-timers have become inured to.

• Poking around will find thousands of pages of documentation on
customizing with exit routines – not a problem if you already know,
but a real challenge to people coming on board.

• There are a number of solutions available for installations to start
addressing the problem – ISV products and even some new
capabilities from IBM like JES2 Policies.

• The zOSEM product from Trident is used in some examples.
Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

“Who should read this information”1

“This information is primarily intended for system programmers who
support accounting and billing services for an installation. It can be
used by installation managers and system programmers who are
responsible for problem resolution, system tuning, and capacity
planning for a z/OS system. This information assumes that the reader
has extensive experience with z/OS, is familiar with its basic concepts,
can code JCL statements to run programs or cataloged procedures, can
code in assembler language, and can read assembler, loader, and
linkage editor output.”

Addressing the Installation Exits Problem

1Excerpt from MVS System Management Facilities (SMF) SA38-0667-40
which contains the information on SMF exits.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

What does it take to write/maintain exit code

For a long-time experienced systems programmer:
• Have sufficient proficiency in assembler language

• Understand the policy that is being enforced by an exit routine

• Sufficiently understand the z/OS component or product that provides the
customization exit point.

• Know (from the manual) the interface to the exit routine.

• Know how to verify that the exit routine does what it is supposed to do in
all case…
….without blowing up the system

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

What one must learn

If the old-timer retires, the new guy must learn all of that, and…

• Assembler language programming is often learned “on the job” – dangerous
when writing supervisor state code.

• It’s not unusual for the only documentation for policy that an exit is
enforcing to be in the assembler module itself.

• Just for learning the interface to exit routines there is a ton that must be
read and understood.
• The JES2 Installation exits manual (SA32-0995-40) is almost 500 pages long and

describes about 60 exit points.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Writing an exit for the SUBMIT command

• Just as an example, lets consider IKJEFF10, the TSO SUBMIT exit.
• It is called to examine the JCL of a job being submitted.
• It runs at high authority in Supervisor State.
• IBM provides a sample exit module that does nothing but

housekeeping
• Among other things in the 10 pages of doc devoted to just this one

exit, it lists some things you might do with it.
• Cancel a SUBMIT request
• Delete, Add or Modify a JCL statement
• Customize the JOB statement, including adding a password

• Then the exit must be tested on a running system – typically a test
LPAR or on z/VM.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Sample SUBMIT Exit

IBM provide IKJEXIT as a sample exit that does nothing but the
housekeeping for the exit routine. Here is the list of housekeeping
activities from the IKJEXIT sample prolog.
* OPERATION - IKJEXIT PERFORMS THE FOLLOWING FUNCTION:
* 1 - ESTABLISHES SAVE AREA TO CALLING PROGRAM
* 2 - SAVES PARAMETER POINTER (R1)
* 3 - DOES A GETMAIN FOR PROGRAM'S SAVE AREA
* 4 - CHAINS THE CALLER'S SAVE AREA AND THIS SAVE AREA
* 5 - DOES A GETMAIN FOR PROGRAM'S WORK AREA
* 6 - DETERMINES WHETHER TO USE PUTLINE OR WTO
* 7 - HEX FORMATS THE PARAMETER ENTRIES
* 8 - IDENTIFIES THE HEX PARAMETER ENTRIES
* 9 - PRINTS ALL OF THE PARAMETER ENTRIES VIA PUTLINE OR WTO
* 10 - DOES A FREEMAIN OF DYNAMIC STORAGE
* 11 - DOES A FREEMAIN OF DYNAMIC SAVE AREA
* 12 - LOADS REGISTER 14 WITH RETURN ADDRESS
* 13 - SETS THE RETURN CODE IN REGISTER 15 (ALWAYS RC=0)
* 14 - LOADS REGISTERS R0 - R12 WITH CALLER'S ENTRY CONTENTS

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Must keep up with changes to IBM samples

• IBM provides a sample program for the exit IEFACTRT in
SYS1.SAMPLIB(IEEACTRT). The sample is over 1200 lines of assembler code

• An installation can use this as a starting point for writing their own
customized exit routine.

• IBM updates the sample as needed from time to time
• IEEACTRT was updated to prevent it from taking a program check when the

job/step or SRB CPU time rounds to zero.

• If an installation used the sample as a base, someone needed to find out
about this change and make the analogous change in the customized copy,
test it, and put it into production.

• Just upgrading to a fast processor can cause this abend to start occurring.
Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Do these changes affect your SMF exit code?
• April 2021 refresh

• The Exit routine environment section for the IEFU86 - SMF record exit is updated. For more
information see, “Exit routine environment” on page 240.

• December 2020 refresh

• Updates are made to the description of parameter word 5 of the IEFUSI exit. See “Entry
Specifications” on page 196. • Updates are made to the description of sub-word 4 of parameter
word 7 of the IEFUSI exit. See “Entry Specifications” on page 196.

• June 2020 refresh

• For BCP Exits, Table 9 on page 315 is updated.

• Prior to June 2020 refresh
• The IEFACTRT installation exit is updated to add the parameter word 14. For more information,

see Chapter 25, “IEFACTRT — SMF Job and Job Step Termination Exits,” on page 133.

Even if the answer turns out to be NO, time must be spent in research
… and this is just for the SMF exits.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Some help from IBM

• Mike Shorkend presented last year to UK GSE on recent work IBM has
done to reduce the need for custom exit code.

• He covered:
• JES2 Policies to replace JES2 exits with JSON. The z/OS 2.4 support is limited

but expected to be increases with continuous delivery.
• IRRPRMxx PARMLIB member to specify RACF data set names and options
• SMFLIMxx PARMLIB member to mostly replace IEFUSI

• z/OS 2.5 adds new phases of processing and new attributes

• This excellent presentation provides examples of the parmlib
members and a short tutorial on JES2 Policies.

https://conferences.gse.org.uk/2020/presentations/4AH.pdf
Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

https://conferences.gse.org.uk/2020/presentations/4AH.pdf

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

JES2 Policies Introduced in z/OS V2R4

• IBM says (z/OS 2.4.0 – z/OS JES2 Installation Exits),
• “The disadvantage of JES2 exit interface is that it involves programming at a low level

and requires knowledge of JES2 control structures and detailed understanding of how
JES2 internal processing works.”

• “JES2 policies provide an alternative way to customize JES2 processing. Creating JES2
policy does not require programming.”

• “JES2 policy definition text is a JSON object. Each policy type has its own set of JSON
names (entries) that can be used in a policy definition. However, there are JSON names
common for all JES2 policies and syntax rules that apply to policies of all types.”

• JES2 Policies seems to require a language, even if not a “programming
language”.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Addressing the Exits Issues

• The first step is to locate and make an inventory of the exit code.

• Trident Services has created a powerful utility to find and identify the
installation exit routines associated with the exit points provided by z/OS
elements and related products.

• Having identified the exit routines and located the source code, it’s possible to
“reverse engineer” the installation policy they are attempting to enforce.

• Even if there is written documentation, it must be verified that it describes the
policies actually being enforced by the exit code.

• Once the installation policy is determined, much of the exit code can be
replace with, for example, zOSEM functionality and the installation’s
customized exit code can be retired.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

The Exit Explorer Tool Produces a Report
• The Exit Explorer searches the system for more than 500 exit points.
• The exit points are listed by Group, e.g. JES2 or TSO.
• The exit point name, the name and location of the exit load module are listed.
• The first 80 bytes of the exit load module are listed. This may provide a clue as

to the source of the module.

This is the beginning of the listing for SMF exits:

...EXITPOINT.... ..NAME.. LOCATION ..ADDR.. LENGTH LOADMOD. ..ADDR.. LENGTH LIBRARY DATASET NAME

***** SMF EXITS

SYSASCH.IEFACTRT IEFACTRT PLPA 46233A8 100 IEFACTRT 46233A8 SYS1.LPALIB

EXIT TEXT: " IEFACTRT05/13/90 HBB4410 00 IEFTB724 89.268 0 = " 0 "

SYSJES2.IEFACTRT IEFACTRT PLPA 46233A8 100 IEFACTRT 46233A8 SYS1.LPALIB

EXIT TEXT: " IEFACTRT05/13/90 HBB4410 00 IEFTB724 89.268 0 = " 0 "

SYSOMVS.IEFACTRT IEFACTRT PLPA 46233A8 100 IEFACTRT 46233A8 SYS1.LPALIB

EXIT TEXT: " IEFACTRT05/13/90 HBB4410 00 IEFTB724 89.268 0 = " 0 "

SYSSTC.IEFACTRT IEFACTRT PLPA 46233A8 100 IEFACTRT 46233A8 SYS1.LPALIB

EXIT TEXT: " IEFACTRT05/13/90 HBB4410 00 IEFTB724 89.268 0 = " 0 “

.

.

DEFINED EXITPOINTS: 70, ACTIVE EXITPOINTS: 64, ACTIVE EXITS: 77

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Key to the Exit Explorer Report
Exit Entry: Each exit entry within an exit section consists of two lines of
information.

Line One: The first line of information contains the following fields:
EXITPOINT The name of the exit point.
NAME The name of the exit program.
LOCATION The location where the exit program was found. Possible values are:

DYN-LPA The exit program was found in the Dynamic link pack area.
Dynamic LPA is also known as active LPA.
FLPA The exit program was found in the Fixed link pack area.
LINKLIB The exit program was found in a link list dataset.
MLPA The exit program was found in the Modified link pack area.
PLPA The exit program was found in the Pageable link pack area.
STEPLIB The exit program was found in a library specified on the STEPLIB DD statement.
UNKNOWN The zOSEM Exit Explorer utility could not determine the location of the exit program.

ADDR The address of the exit program. LENGTH The length, in bytes, of the exit program.
LOADMOD The load module name. ADDR The address of the load module.
LENGTH The length, in bytes, of the load module.

Line Two: Displays the first 80 bytes of the exit load module.
Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

The Tool Finds Exit Routines in these Groups
• ABARS - Aggregate Backup And Recovery

Support
• ALLOC - Allocation
• ARM - Automatic Restart Management
• CONSOLE - Consoles
• DFSMS - Data Facility Storage

Management Subsystem
• DLF - Data Lookaside Facility
• DSS - Data Set Services
• DUMPS - Dumping Services
• DYN_LPA - Dynamic LPA Service
• FTP - File Transfer Protocol
• GRS - Global Resource Serialization
• HLTH_CHK - Health Checker
• HISSERV - Hardware Instrumentation

Services
• HSM - Hierarchical Storage Management*
• IEHINITT - System Utilities
• JES2 - Job Entry Subsystem 2

• LANG_ENV - Language Environment
• LLA - Library Lookaside
• LOGR - System Logger
• MESSAGE - Message Processing
• RACF - Resource Access Control Facility
• SAF - System Authorization Facility
• SDUMP - SVC Dump
• SLIP - Serviceability Level Indication

Processing
• SMF - System Management Facilities
• SMS - Storage Management Subsystem
• SUBSYS - Subsystem Interface (SSI)
• SYMREC - Symptom Record
• SYSTEM - System
• TSO - Time Sharing Option
• USS - UNIX System Services
• XCF - Cross-system Coupling Facility

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Installing and running the Exit Explorer

• The distribution file for the utility is a binary file image of a
TERSED dataset (i.e. it is compressed using the AMATERSE utility).

• A JCL sample for unloading the tool onto your system is provided.

• The tool must reside in an authorized library.

• A users’ guide is provided which contains information on how to
run the tool and interpret the report.

• Requests for a copy of the Trident Exit Explorer can be sent to:
INQUIRY@TRISERV.COM

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

mailto:INQUIRY@TRISERV.COM

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Determining Installation Policy

• Once the active installation exit code has been identified the
corresponding source code must be located.

• The source code can be “reverse engineered” to determine the
active JCL rules and other policies.

• You can ask the vendor for help with this if you are willing to send
the source modules and macro libraries for examination.

• Once the policy is determined, it can be specified in the non-
programming way and, after activation, be enforced.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Specifying Policy and Rules

In the case of zOSEM, the installation specifies the JCL and
Job rules on ISPF panels.

• The policy can be updated and later activated.

• The updated policy can be activated dynamically without re-
IPL or recycling JES2 or other subsystems.

• Additional custom exit routines can be daisy-chained if
there is something not addressed by the panel-driven
policies.

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Assembler Language vs ISPF Panels
Here’s just a small snippet from the IEEACTRT
assembler sample to create a usage statistics
“flowerbox” for steps and jobs.

LR R04,R09 Point to the SMF30 record. @PAA

A R04,SMF30POF Point to Perf section. @PAA

USING SMF30PRF,R04 Perf section addressability @PAA

SGR R00,R00 Zero for later division. @PAA

SGR R01,R01 Clear reg1 @02A

LH R15,SMF30CPC Acquire CPU SDC scaled by 10. @02M

LTR R15,R15 Check for non-zero SMF30CPC @02A

JZ FMTSCPU Jump around computations @02A

LG R01,SMF30CSU_L Acquire CPU service units. @PAA

MSGF R01,F10 SMF30CSU multiply by 10 @PAA

* Perform multiplications before the division to preserve @PAA

* as much precision as possible. @PAA

MSGF R01,SMF30SUS multiply by SMF30SUS @PAA

LLGTR R15,R15 Extend to 64-bits. @PAA

DLGR R00,R15 divide by SMF30CPC @PAA

SRLG R01,R01,4 divide by 16. @PAA

FMTSCPU DS 0H Format step CPU time @02A

The IBM-supplied skeleton for this routine is
over 1200 lines of assembler code.

An installation may have dozens of hand-coded
modules like this.

zOSEM provides dozens of panels for the
installation to clearly and conveniently state the
JCL rules and policies.

This is the zOSEM panel for specifying options for
job and step ends

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Step End
Statistics

**

* * * * *

* TRIDENT SERVICES * TIMINGS * SERVICE UNITS * I/O ACTIVITY *

* DEVELOPMENT * * * *

* CAPITOLA, CA * QUEUE......... 00:11.63 * TCB...........1,171,081 * TAPE....................0 *

* * ELAPSED....... 14:54.08 * SRB...............5,069 * DASD..................161 *

* z/OS REL 2.2 - 1090/SYSA * CPU(TCB)...... 02:42.01 * I/O...............6,260 * VIO.....................0 *

* * CPU(SRB)...... 00:00.59 * MSO...................0 * OTHER...................0 *

* JOB.....OSEMTVFY COMP CODE.......0000 * CPU(ZAAP)..... 00:00.00 * ESU...................0 * SYSTEM..............6,184 *

* * CPU(ZIIP)..... 00:00.00 * TOTAL.........1,182,410 * TOTAL...............6,345 *

* STEPS..........7 DATE........03/22/19 * INIT.......... 00:00.85 * * *

* * I/O INTRPT.... 00:01.18 * EXTENSIONS * TAPE MOUNTS *

* JOB PRTY.......0 SRV CLASS...BATCHSYP * RDR START..... 10:10:40 * * *

* * JOB START..... 10:10:51 * CPU......0 WAIT......0 * SPECIFIC................0 *

* ACCOUNT:.........................OS$EM * JOB END....... 10:25:45 * * NON-SPECIFIC............0 *

* * * TIOT STORAGE USE.....1% * *

* ESTIMATED COST:..................$0.00 * INST(TCB).......62,877M * STEP 14.............ASM * *

* * INST(SRB).....1,424,338 * PRCSTP.........ASSEMBLE * *

* * * * *

Job End
Statistics

* * * * *

* TRIDENT SERVICES * TIMINGS * VIRTUAL STORAGE USE * PAGING DATA *

* DEVELOPMENT * * * *

* CAPITOLA, CA * ELAPSED....... 01:11.40 * REGION REQD......6,144K * PAGES IN................0 *

* * CPU(TCB)...... 01:04.83 * USED BELOW..........96K * PAGES OUT...............0 *

* z/OS REL 2.2 - 1090/SYSA * CPU(SRB)...... 00:00.45 * USED ABOVE.......4,964K * SWAPS IN................0 *

* * CPU(ZAAP)..... 00:00.00 * SYSTEM BELOW.......492K * SWAPS OUT...............0 *

* JOB.....OSEMTVFY STEP..........STPJOB * CPU(ZIIP)..... 00:00.00 * SYSTEM ABOVE....12,144K * VIO PAGES...............0 *

* * INIT.......... 00:00.05 * MAX BELOW.......10,216K * SWAP COUNT..............0 *

* PRCSTP.......... DATE........03/22/19 * I/O INTRPT.... 00:00.92 * MAX ABOVE........1,741M * WORKING SET.........4520K *

* * RESIDENT...... 00:29.08 * 64-BIT PVT..........16M * *

* PGM.....IKJEFT1B COMP CODE.......0000 * ACTIVE........ 00:29.08 * 64-BIT SHR...........0M * TOTAL I/O *

* * DEV CONNECT... 00:00.00 * MEMLIMIT 0M * TAPE....................0 *

* STEP NUMBER....3 SRV CLASS...BATCHSYP * * * DASD...................73 *

* * STEP START.... 10:15:06 * SERVICE UNITS * VIO.....................0 *

* EXEC PRTY......0 TAPE MOUNTS........0 * ALLOC START... 10:15:06 * TCB.............468,596 * OTHER...................0 *

* * PGM START..... 10:15:06 * SRB...............3,896 * SYSTEM..............4,482 *

* ACCOUNT:.........................OS$EM * STEP END...... 10:16:17 * I/O...............4,546 * TOTAL...............4,555 *

* * * MSO...................0 * *

* ESTIMATED COST:..................$0.00 * INST(TCB).......24,656M * ESU...................0 * TIOT SIZE..........65,503 *

* * INST(SRB).......386,403 * TOTAL...........477,038 * PERCENTAGE USED........1% *

“Flowerboxes” with a click

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Simplifying z/OS Upgrades

▪ Translate your existing exit functionality to zOSEM functions or
other ISV product or JES2 Policies (for JES2 exits)
• Specify policy via ISPF panels or non-programming language instead of

writing assembler code

• Check for new support for customization with parmlib rather than code.
• Ask the vendor or IBM for help with the specification

▪ Eliminate (or greatly reduce) your custom assembler language exits

▪ For the next z/OS upgrade:
• ISVs and IBM typically supports new z/OS releases at GA
• At worst, apply appropriate IBM or ISV PTFs
• Your customizations are preserved with no effort

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Some More Examples

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Primary Option Menu

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Controlling the use of SYSOUT Classes

It’s not uncommon for an installation to want to control the SYSOUT
classes that different categories of jobs can use.

Suppose a site wants to restrict the use of certain SYSOUT classes to
production workloads only.

• Exit Implementation: Develop code in a JES2 EXIT 6 to:
• Analyze DD JCL statements for SYSOUT= class
• Extract the class value
• Call security product after incorporating the SYSOUT class value in the security profile
• Evaluate the response from security. If access is denied, issue notification messages and

terminate job

• Estimated programming effort: 2K+ lines of code.
OR

ISPF Dialog option path 3.7.6.4.18
Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Doing it without programming

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

JCL Controls SYSOUT Menus

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Controlling the Jobs Submitted from TSO

1. Have the job name start with the first 6 characters of the TSO userid
2. Ensure that jobs being submitted only use job classes authorized for TSO-

submitted batch work.

Exit Implementation: Develop code in a TSO IKJEFF10 exit to analyze the JOB JCL statement
1. If the first 6 characters of the Jobname do not match the submitter’s TSO USERID, move the USERID

into the job name
2. Check external security to ensure that the user is authorized to submit jobs using the specified job

class. Abort job submission if not.

• Estimated programming effort: 2K+ lines of code.

OR

1. ISPF Dialog option path 3.8.11
2. ISPF Dialog option path 3.7.4

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Checking Jobname against USERID

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Checking Authorization to Use Job Class

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Controlling the Jobs Submitted from TSO

The installation wants to use job classes G & W are for ‘hot’ batch jobs (i.e.
short running jobs). Jobs should not execute longer than the TIME
specification in the JES2 JOBCLASS definition.

Exit Implementation: Develop code in a TSO IKJEFF10 exit to analyze the
JOB JCL statement looking for the TIME= parameter

• Unless the TIME= value is less, set it to the value defined in the JES2
JOBCLASS definition

• Estimated programming effort: 1.5K+ lines of code.

OR

ISPF Dialog option path 3.15.1

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Limiting CPU time for “Hot” Job Classes

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

GSE UK Virtual Conference 2021
Virtually the best way to learn about Z

Thank You

Addressing the Installation Exits Problem © 2021 Trident Services, Inc.

