
IBM z/OS 2.4 Enhancements
for Apps Leveraging REST
APIs
Steve Warren, swarren@us.ibm.com

Senior Technical Staff Member

z/OS Client Architect, IBM Garage for Systems

Agenda

• Overview of Client Web Enablement Toolkit

• HTTPS portion of toolkit, connection requests and response.

• Newer Functions:

• Tracing

• GH and samplib samples

• AT-TLS / Toolkit Interoperability

• Secure HTTP proxy support

• SNI (server name identification)

• New Patch request option

• Recent JSON parser enhancements

• Questions and Answers

2

z/OS serving REST APIs

• z/OS platform has for years been labeled “the server of servers” and houses
much of the world’s most critical data.

• Enhancements to the z/OS Web serving space through the years have
allowed this mammoth workhorse and repository of data to be more easily
accessible to other systems.

3

Overview of Client
Web Enablement

Toolkit

4

Socket from COBOL
DB2 REST UDF

HTTP client from Java

What about z/OS as a REST client?

• Client solutions imbedded in individual products or languages

• No generic web services or even a JSON parser available in all environments

5

z/OS Client Web Enablement Toolkit

The z/OS client web enablement toolkit provides a set of lightweight application
programming interfaces (APIs) to enable traditional, native z/OS programs to
participate in modern web services applications.

● Pieces of the toolkit:

– A z/OS HTTP/HTTPS protocol enabler to externalize HTTP and HTTPS client functions in an easy-
to-use generic fashion for user’s in almost any z/OS environment

– A z/OS JSON parser which parses and modifies JSON coming from any source, both IBM-1047
and UTF-8 encoding format.

● The toolkit allows its two parts to be used independently or combined together.

– Payload processing is separate from communication processing.

● The interfaces are intuitive for people familiar with other HTTP enabling APIs or
other parsers

● Easy for newbies

● In base of z/OS operating system. Nothing to install!

6

HTTPS portion of
toolkit, connection

requests and
response.

8

z/OS HTTP/HTTPS Protocol Enabler
Connections / Requests

● The HTTP/HTTPS enabler portion of the toolkit
encompasses two major aspects of a web services
application:

– The connection to a server

– The request made to that server along with the response it
returns

12

z/OS HTTP/HTTPS Protocol Enabler
HTTP Connections

● A connection is simply a socket (pipeline) between the application
and the server.

● Must be established first before a request can flow to the server.

● Many options available for connection including:

– SSL/TLS

– Local IP address specification

– IP Stack

– Timeout values

13

z/OS HTTP/HTTPS Protocol Enabler
Lifecycle of an HTTP Connection

● Initialize a connection (HWTHINIT)

– Obtain workarea storage for the connection

● Set one or more connection options (HWTHSET)

– One option at a time

● Make the actual connection (HWTHCONN)

– Creates the socket to the specified server

….Requests are made to the server represented by the connection……

● Disconnect from the server (HWTHDISC)

– Closes the socket to the specified server

● Terminate the connection (HWTHTERM)

– Free the workarea storage

14

z/OS HTTP/HTTPS Protocol Enabler
HTTP Request Overview

• A client makes an HTTP request to a server (endpoint)
• This HTTP request will typically be one of these types:

• GET (read existing resource)
• PUT (write/update existing resource)
• POST (write new resource)
• DELETE (remove existing resource)

• May send Request Headers
• May send Request Body (PUT and POST)

• The endpoint returns an HTTP response
• Response consists of status (1xx, 2xx, 3xx, 4xx, 5xx)
• Response headers
• Response body (most requests)

15

z/OS HTTP/HTTPS Protocol Enabler
HTTP Requests

● An HTTP request sent over an existing connection

– Targets a particular resource at the domain established by
the connection

– An HTTP GET, PUT, POST or DELETE is specified as the request method

● Requests not tightly-coupled to a connection. The same request can be sent
over different connections

● Response callback routines (exits) can be set prior to the request to handle
returned response headers and response body.

16

z/OS HTTP/HTTPS Protocol Enabler
Lifecycle of an HTTP Request

● Initialize a request (HWTHINIT)

– Obtain workarea storage for the request

● Set one or more request options (HWTHSET)

– One option at a time

● Send the request over a specified connection
(HWTHRQST)

– Flows the HTTP REST API call over the connection

(socket) and then receives the response

● Terminate the request (HWTHTERM)

– Free the workarea storage associated with the request

17

z/OS HTTP/HTTPS Protocol Enabler
z/OS Client Toolkit HTTP Language Support

Include files and sample programs provided in:

•C
•COBOL
•PL/I
•Assembler (Include file only)

•REXX

19

Enhanced Tracing

20

Enhanced Tracing
Current Debugging Capabilities using Toolkit Tracing

t: An error occurred: Certificate validation error

t: Reason code: 8

t: Return code: -1

t: Service: 22

t: Service Instance: 0

• Turn on tracing option using HWTH_OPT_VERBOSE option

• HWTH_OPT_VERBOSE_OUTPUT option allows specification of a DD where
HTTP trace output is to be directed

• The DD name above must represent either:

• a pre-allocated traditional z/OS data set which is a physical sequential
(DSORG=PS) with a record format of unblocked variable (RECFM=V) or
Undefined (RECFM=U) and expandable (non-zero primary and secondary
extents). The DD must also specify a DISP=OLD disposition.

• a zFS file.

21

Enhanced Tracing
Limitations of Toolkit Tracing Today
• One of the most challenging tasks with using toolkit is to get the first

SSL/TLS handshake to work
• Current tracing provides some details

• System SSL tracing provides additional detailed information
• System SSL tracing setup requires extra, sometimes time-consuming, steps. If using REXX, impossible.

• Limited tracing header information cut for each trace record
• Time and process data not present

• Existing toolkit trace data may contain sensitive personal information
• On query parms, request or response headers, or request/response body

• Toolkit tracing cannot be turned on non-programmatically
• Not having access to source code or having to code tracing in code you didn’t even

write is problematic

22

Enhanced Tracing - New SSL/TLS tracing support

• New connection option to enable SSL/TLS tracing
• HWT_OPT_SSLTRACE

• Set to name of fully-qualified zFS file name where SSL tracing output should be directed.
• /u/steve/myTLSerrorTrace.trc or

• /u/steve/myTLStrace.%.trc where % is replaced by the process id of the process id issuing the REST API

• Applies to application-specified SSL/TLS security connections only
• Applications running under AT-TLS enabled policy must see AT-TLS publications to enable SSL/TLS tracing

• Defaults to no SSL Tracing

• Internals:
• Toolkit will set the tracing level to maximum (GSK_TRACE = 255)

• Output is raw tracing data (not human-readable)

• Tracing data can easily be formatted using the System SSL GSKTRACE
command (in the z/OS UNIX shell)
• gsktrace myTLSerrorTrace.trc > myTLSformattedTrace.trc

23

Enhanced Tracing
New SSL/TLS tracing support example

Toolkit tracing:

System SSL tracing:

24

Enhanced Tracing
Tracing able to redact sensitive personal information

• New toolkit connection option value for HWTH_OPT_VERBOSE
• HWTH_VERBOSE_OFF

• No tracing desired

• HWTH_VERBOSE_ON

• Tracing is enabled

• All sensitive data is redacted
• Query parms

• Non-”allow-listed” header values (as specified by RFC7231)

• Cookie values (not the cookie meta-data)

• Any request or response body data

• HWTH_VERBOSE_UNREDACTED

• New value to see all data unredacted except “block-listed” headers (as specified by
RFC7231)

• Authorization and Proxy_Authorization headers

• Almost identical to the old HWTH_VERBOSE_ON option value

25

Enhanced Tracing
Tracing redacting example

• Example showing the new tracing data using HWTH_VERBOSE_ON option:
2020-01-21T23:13:47.334427Z 0E36B00000000001 0083886187 0000000001 t: HWTH_OPT_VERBOSE has been set to HWTH_VERBOSE_ON

2020-01-21T23:13:47.367759Z 0E36B00000000001 0083886187 0000000001 t: GET /?[redacted] HTTP/1.1

2020-01-21T23:13:47.393080Z 0E36B00000000001 0083886187 0000000001 t-Entry: headerCallback

2020-01-21T23:13:47.393371Z 0E36B00000000001 0083886187 0000000001 t-Exit: headerCallback

2020-01-21T23:13:47.393668Z 0E36B00000000001 0083886187 0000000001 t: Header: Vary = Accept-Encoding

2020-01-21T23:13:47.393993Z 0E36B00000000001 0083886187 0000000001 t-Entry: headerCallback

2020-01-21T23:13:47.394293Z 0E36B00000000001 0083886187 0000000001 t-Exit: headerCallback

2020-01-21T23:13:47.394597Z 0E36B00000000001 0083886187 0000000001 t: Header: X-Cache = [redacted]

2020-01-21T23:13:47.400722Z 0E36B00000000001 0083886187 0000000001 t: Invoking the user specified body exit

2020-01-21T23:13:47.401035Z 0E36B00000000001 0083886187 0000000001 t: Client received 1636 byte response [redacted]

2020-01-21T23:13:47.401331Z 0E36B00000000001 0083886187 0000000001 t-Entry: finalizeResponse

• Example showing the tracing data using HWTH_VERBOSE_UNREDACTED option:
2020-01-21T23:16:16.060339Z 0E36B00000000001 0000000108 0000000001 t: HWTH_OPT_VERBOSE has been set to HWTH_VERBOSE_UNREDACTED

2020-01-21T23:16:16.063515Z 0E36B00000000001 0000000108 0000000001 t: GET /?secretstuff HTTP/1.1

2020-01-21T23:16:16.084825Z 0E36B00000000001 0000000108 0000000001 t-Entry: headerCallback

2020-01-21T23:16:16.085127Z 0E36B00000000001 0000000108 0000000001 t-Exit: headerCallback

2020-01-21T23:16:16.085444Z 0E36B00000000001 0000000108 0000000001 t: Header: X-Cache = HIT

2020-01-21T23:16:16.090112Z 0E36B00000000001 0000000108 0000000001 t: Invoking the user specified body exit

2020-01-21T23:16:16.090428Z 0E36B00000000001 0000000108 0000000001 t: Client received 1636 byte response:

2020-01-21T23:16:16.091051Z 0E36B00000000001 0000000108 0000000001 t:

Response: First 40 (of 1256) bytes: <!doctype html>.<html>.<head>. <title (Hex:

4c5a849683a3a897854088a394936e154c88a394936e154c888581846e15404040404ca389a39385)

2020-01-21T23:16:16.091914Z 0E36B00000000001 0000000108 0000000001 t: Last 40 (of 1256) bytes: ation...</p>.</div>.</body>.</html>. (Hex:

81a38996954b4b4b4c61816e4c61976e154c618489a56e154c61829684a86e154c6188a394936e15)

2020-01-21T23:16:16.092209Z 0E36B00000000001 0000000108 0000000001 t-Entry: finalizeResponse

26

Enhanced Tracing
Improved tracing header information

• Both time and process id appear in the header
• Easier to create a timeline of what took place and when

• Easier to trace multi-threaded applications

Example prefix output, ISO 8601 format (GMT):

1 1 2 2 3 3 4 4 5 5 6 6

....5....0....5....0....5....0....5....0....5....0....5....0....5

2019-07-10T01:57:24.105881Z 0BD2580000000000 0050331656 0016777222

Date & time in ISO8601 format, GMT pthread pid ppid

27

Enhanced Tracing
New non-programmatic way to turn on tracing

• Great for when you don’t have access to the source code or when
modifying the program to enable tracing could be challenging

• User can specify runtime environment variables
• HWTH_OPT_VERBOSE

• HWTH_OPT_VERBOSE_OUTPUT

• HWTH_OPT_SSLTRACE

• Values specified will override any tracing options specified in the
toolkit application
• Even if tracing is turned explicitly off in application, user can enable tracing

28

Enhanced Tracing
How do I set these runtime environment variables to set the
tracing options?

• Application running in LE environment
• Use the z/OS UNIX export command

• Application running in non-LE environment
• Set the variables by using the CEEOPTS DD statement

• TSO example:
• Data set JOEUSER.TRACING.OPTIONS contains the options:

ENVAR(“HWTH_OPT_VERBOSE=HWTH_VERBOSE_UNREDACTED”,

“HWTH_OPT_VERBOSE_OUTPUT=MYDD”,

“HWTH_OPT_SSLTRACE=/u/joeuser/gskssl.trc”)

• TSO user allocates the 2 required DDs: for CEEOPTS (‘JOEUSER.TRACING.OPTIONS’) and MYDD (‘u/joeuser/joe.trc’))

– You will have unredacted tracing stored in /u/joeuser/joeuser.trc and SSL/TLS tracing stored in
/u/joeuser/gskssl.trc.

29

Availability of tracing enhancements

• All tracing enhancements available in APAR OA58707
• V2R3 and higher (by end of 1Q20)

30

GH samples and
samplib

31

z/OS Web Enablement Toolkit Samples on Github!

• GeoServices
• Demonstrates how to use the toolkit to obtain the

distance between two cities using the Geo
Services REST API.

• Download
• Demonstrates how a native z/OS application can

use toolkit to download content from a REST API
endpoint.

• z/OSMF
• Shows how to use a sampling of different z/OSMF

REST APIs

• Slack
• Shows how to use the toolkit to post a message to

a Slack channel.

• New airport service
• Shows how to use the toolkit to get descriptive

information about an airport using a 3 character
IATA as input.

https://github.com/IBM/zOS-Client-Web-Enablement-Toolkit

32

https://github.com/IBM/zOS-Client-Web-Enablement-Toolkit

Revamped Web Toolkit Samplib samples

• Replacing FAA sample with simpler sample
• Target http://example.org website
• Shipping COBOL, REXX, C, and PL/I samples

• Minor fixes to existing samples
• Available in APAR OA57475 (V2R3 and higher)

38

AT-TLS / Toolkit
Interoperability

39

HTTP Services – AT-TLS / Toolkit Interoperability

•Application Transparent – TLS is basically stack-based TLS
• TLS process performed in TCP layer (via System SSL) without requiring any

application change (transparent)
•AT-TLS policy specifies which TCP traffic is to be TLS protected based on a

variety of criteria
• Local address, port
•Remote address, port
• z/OS userid, jobname
• Time, day, week, month

•Gives network administrators greater control over the security
requirements of network applications rather than individual
applications

40

HTTP Services – AT-TLS / Toolkit Interoperability

•Toolkit is now AT-TLS aware
• Application does not specify SSL/TLS options directly within toolkit application?

• AT-TLS policy upgrades connection to SSL/TLS?
• Toolkit will treat the requests over this connection as HTTPS requests
• All cookies and redirect processing will be now operate as an HTTPS request.

• AT-TLS policy does not upgrade connection or no policy in effect?
• Business as usual. Request will operate as HTTP

• Application specifies SSL/TLS directly within toolkit application?
• AT-TLS policy upgrades connection to SSL/TLS?

• Toolkit rejects the request. Network configuration and application are in conflict.

• AT-TLS policy does not upgrade connection or no policy in effect?
• Business as usual. SSL/TLS credentials will be specified by the application. If successful

handshake, then request will operation as HTTPS.

• Available in APAR OA50957 (V2R2 and higher)

41

New SSL Cipher Specs support

• When a secure connection is established, the client and server negotiate the
cipher to use for the connection (RFC5246). These ciphers help determine how
the data will be encrypted and decrypted.

• The web server has an ordered list of ciphers, and the first cipher in the list that
is supported by the client is selected.

• New HWTH_OPT_SSLCIPHERSPECS option allows the application to specify a
list of 4-character cipher definitions

• Should be ordered by preference of use
• Requires HWTH_OPT_USE_SSL option to be set to HWTH_SSL_USE

(application-initiated SSL connection)
• Allows the client application to replace the default list of acceptable cipher

specifications with its own list
• Available in APAR OA53546 (V2R2), in base V2R3

42

New SSL TLS 1.2 optimization support

• Full TLS/SSL handshake (prior to TLS 1.2)
• High latency
• Two round-trips required
• Expensive computation to exchange keys or sign and verify certificates

43

New SSL TLS 1.2 optimization support

• Abbreviated (short) handshake (TLS 1.2)
• The full handshake is required at least once.
• The full handshake results in server sending a session ID back to the client.
• This ID is cached on the server and by the toolkit (client-side)
• If new request is made to the same server and the connection is no longer there,

the toolkit attempts to send this cached session ID as part of the new handshake.
• If the server accepts this session ID, the server quickly completes the handshake, bypassing most of

the full handshake steps.
• If the server does not accept the session ID, a full handshake will result.

SSL Client SSL Server
Client “Hello” (1)
+Session ID

Verify Session
ID (if required) (2)

Server “Hello”
Change CipherSuite
Finished (3)

Change CipherSuite
Finished (4)

Exchange Messages (5)

New SSL TLS 1.2 optimization support…

• For application-initiated SSL connections
• The toolkit will use the abbreviated handshake whenever it

is possible to resume a previously established secure connection.
• Connections using AT-TLS can also avail themselves of this optimization

automatically when running on V2R2 or higher
• Toolkit optimization will only be available if a connection has not been

disconnected. Use cases include:
• A server times out a connection. A request is then attempted over this

timed-out connection.
• A server sends a Connection Closed response header (or fails to specify

Keep-Alive (HTTP 1.0)). A request is then attempted over this closed
connection.

• Available in APAR OA53546 (V2R2) – base V2R3

45

New SSL TLS 1.3 support

• Improved security and speed
• State-of-the-art cryptography
• Potentially less data flows between 2 parties

• Handshakes are generally only a single round-trip
• Most handshake messages are encrypted
• Reduction in algorithms, deprecated features
• Many other enhancements

• z/OS support is only on z/OS V2R4

• New option value for HWTH_OPT_SSLVERSION option
• HWTH_SSLVERSION_TLSv13

• Applies to toolkit application-specified security

• Available in APAR OA58708
• V2R4 only

46

Secure HTTP proxy support

47

HTTP Proxy Enhancements
(Authenticating Proxy Support)

• Anytime a proxy is used, the following existing options must be specified to set the
proxy address and port:

• HWTH_OPT_PROXY
• HWTH_OPT_PROXYPORT

• If the proxy is an “authenticating proxy”, “Basic authentication” credentials for the
proxy can be specified via new toolkit options:

• HWTH_OPT_PROXYAUTH

• HWTH_PROXYAUTH_NONE

• No proxy authorization is used. Default.

• HWTH_PROXYAUTH_BASIC

• Use basic proxy authentication. HWTH_OPT_PROXYAUTH_USERNAME and
HWTH_OPT_PROXYAUTH_PASSWORD will be sent to proxy in Basic auth format.

• HWTH_OPT_PROXYAUTH_USERNAME

• HWTH_OPT_PROXYAUTH_PASSWORD

48

HTTP Proxy Enhancements
(AT-TLS Proxy Support)

• AT-TLS can now be used to secure HTTPS connections that go
through a proxy

• Network admin defines connection with the proxy address (defined by
HWTH_OPT_PROXY and HWTH_OPT_PROXYPORT) to an AT-TLS
“application-controlling” policy

• This policy must specify a keyring that is suitable for any and
all HTTPS destinations that will be reached via that proxy

• No need to map a specific HTTPS destination to an AT-TLS

• Unless application connects to it directly without a proxy

• Both available with APAR OA54902 (V2R2 and V2R3)

49

SNI (Server Name
Identification)

50

Server Name Indication (SNI)

• Allows a single IP address to support multiple domain names

• Each domain within a single IP address can have its own unique SSL
certificate

51

Server Name Indication (SNI)

• When application specifies SSL/TLS security options (i.e.
HWTH_SSL_USE is turned on)

• Connection will automatically include an SNI extension

• Provided the Connection URI is in Domain Name System (DNS) format

• Server will negotiate the SSL/TLS handshake using the proper
certificate for the particular domain.

• Available with APAR OA54902 (V2R2 and V2R3))

52

New PATCH and OPTION
HTTP Method Support

53

Current Toolkit HTTP Method Support

• The basic REST API (CRUD) methods

• Create (POST)

• Read (GET)

• Update (PUT)

• Delete (DELETE)

• Other HTTP method support

• HEAD (same as a GET but without the response body)

54

Digging a little deeper with updating methods

• POST
• Requests that the server accept the entity enclosed in the request

as a new subordinate of the web resource identified by the URI.
The newly created entity is automatically returned in the Location
response header.

•PUT
• Requests that the enclosed entity be stored under the

supplied URI. If the URI refers to an already existing resource, it is
modified; if the URI does not point to an existing resource, then
the server can create the resource with that URI. A complete
replace

55

https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

What if I don’t want a complete replace?

•PATCH

• Applies partial modifications to a resource

• Uses instructions in the request body

• May create a collection or member if it does not exist

56

Example contrasting PUT and PATCH behaviors

{ “id”: 1,
“name”: “John Smith”,
“email”: “steve@olddomain.com”,
“phone”: “+1 914 475 6308”

}

PUT /users/1
{“email”: “steve@newdomain.com”}

{“email”: “steve@newdomain.com”
}

Resource before PUT:

Resource after PUT:

Example contrasting PUT and PATCH behaviors

{ “id”: 1,
“name”: “John Smith”,
“email”: “steve@olddomain.com”,
“phone”: “+1 914 475 6308”

}

PATCH /users/1
{“email”: “steve@newdomain.com”}

{ “id”: 1,
“name”: “John Smith”,
“email”: “steve@newdomain.com”,
“phone”: “+1 914 475 6308”

}

Resource before PATCH:

Resource after PATCH:

58

What if I don’t know what HTTP request methods are
available on a server?

• OPTIONS HTTP Method returns the HTTP methods the

server supports for the specified URL

• Can also be used to check the functionality of a web server

by requesting “*” instead of a specified resource

• Example:
OPTIONS * or
OPTIONS /user/1

Allow: OPTIONS, GET, HEAD, POST

Response Header with a 204 (No Content HTTP Status Code):

59

Toolkit support of PATCH and OPTIONS

• New HWT_OPT_REQUESTMETHOD option values
• HWTH_HTTP_REQUEST_PATCH

• HWTH_HTTP_REQUEST_OPTIONS

• Available in APAR OA58707 in V2R3 and higher (by end
of 1Q20)

60

Recent JSON Parser
Enhancements

61

Recent JSON parser enhancements

• UTF-8 Support
• Available with APAR OA56139 (V2R2 and V2R3)

• JSON Parser Delete Entry
• Available in APAR OA54901 (V2R2 and V2R3)

• JSON Parser Pretty Print
• Available in APAR OA55438 (V2R2 and V2R3)

• Shallow Search
• Available in APAR OA56227 (V2R2 and V2R3)

62

• Limited to EBCDIC (IBM 1047 codepage) JSON text
• JSON text received on z/OS in ASCII (ISO 8859-1 codepage) easily

translated to EBCDIC since there is 1-to-1 mapping (parser happy ☺
)

• JSON text received in UTF-8 may require extraordinary effort to
convert to IBM 1047

• JSON official RFC7159 states:
• Section 8.1 Character Encoding

• “JSON text SHALL be encoded in UTF-8, UTF-16, or UTF-32.
The default encoding is UTF-8…”

Current JSON parser

• JSON parser supports EBCDIC (IBM 1047) or UTF-8 encodings
• Parser will attempt to auto-detect the encoding and process

appropriately
• Services also provided to manually set and retrieve the encoding of

the JSON text.
• Encodings cannot be commingled
• No changes required for existing toolkit JSON parser applications

already dealing with EBCDIC.

New JSON parser support for UTF-8

• New HWTJGENC service
• Returns 3 possible encoding values

• HWTJ_ENCODING_UTF8

• HWTJ_ENCODING_EBCDIC

• HWTJ_ENCODING_UNKNOWN (prior to parsing JSON text)

address hwtjson “hwtjgenc”,

“ReturnCode”,

“ParserHandle”,

“Encoding”,

“DiagArea.”

New JSON parser support for UTF-8
(Retrieving the JSON text encoding)

• New HWTJSENC service
• Issued after HWTJINIT and before HWTJPARS or HWTJCREN issued to

assert to encoding of the soon to be supplied JSON text
• 2 encoding values allowed

• HWTJ_ENCODING_UTF8

• HWTJ_ENCODING_EBCDIC

address hwtjson “hwtjsenc”,

“ReturnCode”,

“ParserHandle”,

“Encoding”,

“DiagArea.”

New JSON parser support for UTF-8
(Assert the JSON text encoding)

• What if the asserted encoding and the actual encoding don’t match?
• Parse existing JSON Text - HWTJPARS()

• Return code - HWTJ_PARSE_ERROR
• DiagArea Reason Code -

PARSE_ERR_UNEXPECTED_ENCODING
• Creating new JSON Text – HWTJCREN() and supplying JSON

Text via HWTJ_JSONTEXTVALUETYPE
• Return code - HWTJ_PARSE_ERROR
• DiagArea Reason Code -

PARSE_ERR_UNEXPECTED_ENCODING

New JSON parser support for UTF-8
(Assert the JSON text encoding)

• Search service - HWTJSRCH()
• The name to be searched is expected to be in same encoding as the JSON

text encoding detected
• Not enforced – a differently-encoded search string will likely result in “not

found” condition

• Create service - HWTJCREN()
• If modifying JSON text which was already parsed, the data supplied is

expected to be in the same encoding as the JSON text encoding detected
• Not enforced – Comingling of data not of HWTJ_JSONTEXTVALUETYPE can

occur.
• e.g. Adding a string value “1” in EBCDIC to a UTF-8 JSON text will set the

value to be “ñ” (F1 (241) in the UTF-8 codepage)

New JSON parser support for UTF-8
(Other considerations)

JSON Entry Delete

69

• Current support
• Create JSON entry (HWTJCREN)

• Add object, array, string, number, boolean, null
• Add JSON text directly

• Shortfall
• No corresponding delete function

• Requires manual parsing and using library functions to delete
an object from the JSON text (error prone and difficult)

• RFE 82349 written to address the lack of a JSON delete entry
service

• Other internal and external requests for this function

Support for JSON Parser Delete Entry

HWTJDEL(

returnCode,

parserHandle,

objectHandle,

entryValueHandle,

diagArea

)

objectHandle – handle of the object containing the entry to be deleted
entryValueHandle – handle of the specific entry to be deleted

Support for JSON Parser Delete Entry – Syntax

• Can be used to delete simple entry values
• Simple values can be represented by entryValueHandle handle

• If the entryValueHandle represents a string, number, boolean or null
value, the entire entry is removed from the JSON string

• {“IBM products owned”: [“Db2”, “IMS”, “CICS”, “Product A”, “WebSphere”]}

• To delete “Product A”, specify:
• the handle of the array as the objectHandle
• the handle of the value “Product A” as the entryValueHandle

• {“IBM products owned”: [“Db2”, “IMS”, “CICS”, “WebSphere”]}

Support for JSON Parser Delete Entry – Usage

• Can be used to delete complex entry values
• Complex values can be represented by entryValueHandle

• If the entryValueHandle represents an object or array, the entire
object or array is removed from the JSON string

• {“IBM products owned”: [“Db2”, “IMS”, “CICS”, “Product A”, “WebSphere”]}

• To delete the entire “IBM products owned” array, specify:
• the handle of the containing object (in this case root handle) as the
objectHandle

• the handle of the array as the entryValueHandle
• {}

Support for JSON Parser Delete Entry – Usage

• New samples shipped in SYS1.SAMPLIB showing the usage of the HWTJDEL
service:
• HWTJXRX2 (REXX)
• HWTJXC2 (C)
• HWTJXCB2 (Cobol)

• Available in APAR OA54901 (V2R2 and V2R3)

Support for JSON Parser Delete Entry – Availability

JSON Parser Pretty Print

75

• User can create and modify JSON stream via the JSON parser APIs
• User can then serialize the JSON streaminto an output buffer

• JSON text created, but…
• JSON text is not formatted

• Text is very difficult to read
• There is a need to transform this data into human-readable format

JSON parser Pretty Print

• Pretty print formatter shipped as REXX exec in both:
• SYS1.SAMPLIB(HWTJSPRT)
• /samples/jsonprint

• Syntax:
• HWTJSPRT ‘JSON.file(member)’

JSON parser Pretty Print - Syntax

• Example of generated JSON text using HWTJSERI before pretty print:

{"errors":[{"status": "422","title": "Invalid Attribute"}]}

• Example of generated JSON text after running pretty print formatter:
{

"errors": [

{

"status" : "422“ ,

"title" : "Invalid Attribute"

}

]

}

• Available in APAR OA55438 (V2R2 and V2R3)

JSON parser Pretty Print

Enhanced JSON Parser
Search Service

79

Enhanced JSON Parser Search Service

• Current JSON parser search (HWTJSRCH) has two flavors:

▪ HWTJ_SEARCHTYPE_GLOBAL

• Search the JSON text starting at the entry represented by the startingHandle parameter for the first “name” in a
name/value pair found that matches the search string

• Object-ignorant (no scoping of the search to be within the object specified by the startingHandle parameter)

▪ HWTJ_SEARCHTYPE_OBJECT

• Search the JSON text starting at the entry represented by the startingHandle parameter for the first “name” in a
name/value pair found that matches the search string

• objectHandle parameter scopes the search, limiting the search to be within the object represented by the
objectHandle parameter

• Limitation of both search types

▪ No way to limit the depth of the search

▪ No way to restrict the scope of the search to only search the immediate children of
a given object (aka a "shallow" search)

Enhanced JSON Parser Search Service

• Example comparing new HWTJ_SEARCHTYPE_SHALLOW with existing
HWTJ_SEARCHTYPE_OBJECT:

{

"a": "A1",

"b": {

"c": "C1",

"d": {

"c": "C2",

"e": "E1",

"f": "F1"

},

"e": "E2"

},

"c": "C3”

}

• Search for “a” or “b” from the root with either search will return the same value

• Search for “c” from the root:
▪ HWTJ_SEARCHTYPE_OBJECT will return the handle for “C1”
▪ HWTJ_SEARCHTYPE_SHALLOW will return the handle of “C3”

81

Questions and
Answers

82

