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Session Abstract

This short presentation provides some insights into the CPU design 
aspects that enable the Meltdown and Spectre threats. The purpose 
of this presentation is so that one can better understand what is 
being said about the threats themselves, the measures being 
shipped to help protect against these threats, and the degradation 
those measures may cause.

Modern processors actually execute programs quite differently than 
one is lead to believe when learning computer programming. In fact, 
many engineering tricks are used to allow the processor to gain 
speed while maintaining the illusion of executing instructions one at 
a time in the order seen in the program listing. Two potential attacks 
against Intel processors running Window or Linux have been 
uncovered that exploit these engineering tricks. The attacks have 
been named Meltdown and Spectre. They exploit CPU design 
techniques called out-of-order execution, branch prediction, 
speculative execution, and memory caching. Defenses are being 
created to neutralize the threats, but they come with significant 
performance penalty - potentially over 30% for some workloads.



Caveat

I am not an expert on Intel architecture or microarchitecture, but I 

know basic processor design principles. I am not an expert on the 

Windows or Linux operating systems, but I know basic operating 

system design principles.

Therefore, the details of any example in this presentation may not be 

literally true for Intel or Windows or Linux, but the principles are 

correct, based on what I have read about the problems.



Some Processor Design Information



Conceptual vs Pipeline Execution

We tend to think that the processor executes one instruction after the other 

in the order seen in a program listing. This is an illusion. The processor 

actually processes different parts of several instructions at any given time.

Conceptual view of program execution

What the processor actually does - pipeline execution

* Chart is compliments of some German speaker who donated it to Google.



Pipeline Hazards (stalls)

Besides waiting for data, the pipelines can stall because 
of inter-instruction dependencies.

– Address generation interlock (AGI)
– Operand store-compare
– Register load-use
– Register use-reload

Another case for stalls is waiting for targets of conditional 
or indirect branches to be resolved.

To optimize machine cycles, processors can execute 
instructions out of order to fill the “bubbles” caused by 
these dependencies.



Out-of-Order Execution

• Processors that execute instructions Out-of-Order use 

detailed bookkeeping and some tricks to appear to 

execute the program as it was written.

• The processor maintains a table to track the status of 

all in-flight instructions.

• The results of an instruction cannot be stored until all 

older instructions have previously been retired – i.e. 

their results stored and made visible.



Speculative Execution

• Processors that execute instructions Out-of-Order 

typically will not allow an unresolved branch to stall the 

pipelines.

• Instead, they will try to predict where the branch will go 

and then continue OOO execution there speculatively.

• If the prediction turns out to be incorrect, any results of 

instruction execution along the incorrect path must be 

discarded. The instructions must, in effect, be forgotten.

• Exceptions, of course, cause unpredicted branches.

• But – and this is the important point – side-effects of the 

“forgotten” instructions might persist in the 

microarchitecture state of the processor.



Processor Cache

• Processors reduce memory access latency by 

maintaining recently accessed chunks of memory in 

structures called caches. Modern processors have 

multiple levels of caches.

• The data in cache is store in cells called cache lines 

that are typically 64, 128 or 256 bytes in size.

• Data can be accessed much more quickly if it is in 

cache than if it must be brought in from main memory.

• A program can tell if data is being accessed from 

cache by simply timing some code that accesses it.



Branches and Branch Prediction

In order to keep the pipeline supplied with instructions, 

the processor must "guess"  the next instruction.

• The processor maintains a Branch Target Buffer (BTB) of 

taken branches. 

• Branches not taken typically do not take up space in the 

BTB.

• Some branches are predicted statically, e.g. unconditional 

branches

• A mispredicted branch causes a partial flush of the pipeline. 

The instruction which were executed speculatively must, in 

effect, be “forgotten”



Branch Prediction using Branch Target Buffer (BTB)

The processor keeps track of taken branches in the BTB. The entries 

are indexed by a subset of the address of a suspected branch 

instruction.
• It is a suspected branch because the lookup is done before the instruction at 

the address has been decoded. It may not be a branch at all.

• For each branch represented in the BTB there is a predicted direction – taken 

or not taken – and a predicted target if the branch is taken.

After the branch is resolved, the BTB is updated and if the prediction 

was wrong, the results of speculatively executed instructions are 

discarded.  

* Chart is compliments of someone at University of Auckland who donated it to Google.



Meltdown



What is Meltdown?

• Meltdown is an attack that uses memory caching as a 

side channel.

• Basically, it coaxes the processor into making an out-of-

order speculative access to a “protected” byte and then 

to speculatively use the value to access memory that 

the attacker has authority to access.

• After the processor has flushed the results of the 

speculative execution, the data which was accessed 

speculatively is still in cache – including the attacker’s 

data that was loaded based on the value of the 

“protected” byte.



Schematic of Meltdown

Here’s an example taken from Meltdown by Moritz Lipp, et al.

; rcx = kernel address

; rbx = probe array

retry:

mov al, byte [rcx]                          {load a byte at location x}

shl rax, 0xc                                   {multiply by 4096}

jz retry                                           

mov rbx, quadword [rbx + rax]      {load using 4096 times the value at x}

“The core instruction sequence of Meltdown. An inaccessible kernel 

address is moved to a register, raising an exception. The subsequent 

instructions are already executed out of order before the exception is 

raised, leaking the content of the kernel address through the indirect 

memory access”

By timing accesses to the probe array elements, it can be determined if  

the data is in cache or not. If properly initialized, this can reveal the 

value of the “protected” byte.



What does Meltdown Depend On?

Aside from speculative execution, Meltdown depends on 

other conditions:

• The “protected” data needs to be architecturally accessible to 

the attacker. This is true when the Linux kernel is mapped into 

the high half of the user space.

• The processor must delay raising an exception when an 

unauthorized access is made speculatively.

• The attacker must have a way to flush all parts of the probe 

array from cache. Intel has an instruction (clflush) to do this, or 

it can be done brute force if the cache design is known.

• On some Linux systems, the exposure is magnified by the fact 

that all of real memory is mapped into the kernel half of the 

address space. This allows access to the data of other 

processes that is currently in real memory.



A variant that doesn’t raise an exception

• The processor can be coaxed into speculative 

execution without generating an exception.

• Branch prediction can be used to cause the speculative 

execution of instruction.

– Train the processor to expect a branch to not be taken

– Change values so that the branch will be taken and that the 

index is out of bounds.

– This time the fall-through path will access “protected” data

– When the processor resolves the branch, it throws away the 

results of the speculative executed code, but side-effects 

remain in cache.



What does the KAISER fix do?

• Since Meltdown depends on the attacker having 

addressability to the victim’s data, one fix is to no longer 

make the victim’s memory addressable by the attacker.

• KAISER is a fix to Linux so that the kernel is no longer 

mapped into the user space while the user is running.

• The kernel was mapped into the user’s address space in 

the first place to reduce the overhead of system calls.

• With KAISER, the overhead of entering and leaving the 

kernel is increased and, depending on workload, can 

reduce throughput by as much as 30%* (or maybe even 

more).

* See for example: https://blog.appoptics.com/visualizing-meltdown-aws/

https://blog.appoptics.com/visualizing-meltdown-aws/


Spectre



What is Spectre?

Spectre is superficially similar to Meltdown in that it also 

exploits, out-of-order speculative execution, branch 

prediction and data caching. But differs in significant 

ways.

• Spectre does not depend on the attacker’s code having 

addressability to the victim’s data

• It does depend on finding code sequences, called “gadgets”, 

in the victim’s code that can be used to make speculative 

accesses to the victim’s data.

• It depends on training branch prediction to mispredict a 

branch target to branch to the gadget speculatively. 

• JavaScript programs can be written to attack the browser.



Schematic of Spectre

Here’s an example gadget taken from Spectre Attacks: 

Exploiting Speculative Execution by Paul Kocher, et al.

if (x < array1_size)

y = array2[array1[x] *256]

The value x, in this case, is controlled by the attacker. By setting it to 

values outside the bounds of array1, the attacker can cause the processor 

to speculatively load a “protected” byte and use it to speculatively access 

a location in array2 that depends on the value of the “protected” byte.

Two branches need to be subverted for this it work.

By timing accesses to array2 elements, it can be determined if  the data is 

in cache or not. If properly initialized, this can reveal the value of the 

“protected” byte.



How to get the gadget executed

• If there is an indirect branch that the attacker can cause 

the victim to execute, it can “teach” the branch 

prediction logic to think that the gadget is the likely 

target of that branch.

• Since the BTB is indexed by a subset of the bits of the 

address of the actual branch, the attacker can fool the 

processor into making a prediction that is favorable to 

the attacker.

• It is not necessary for the attacker to actually execute 

the victim’s branch. It is sufficient to exercise branches 

within its own space that are synonyms of the victimized 

indirect branches. 



How to Thwart a Spectre Attack

• Unlike Meltdown, Spectre does not depend on any aspects of 

underlying operating system. Therefore, KAISER is ineffective 

against Spectre.

• To defend against Spectre, each potential victim must 

implement its own protection and get it shipped to users.

– It has been recommended to insert “serializing instructions” to inhibit 

speculative execution in code that might be used as a gadget.

– Another mitigation is to force the index (x) to be no larger than the 

lowest power of 2 greater than the size of the array (ANDing off high-

order bits). This limits the scope of what can be accessed 

speculatively.

• Browser developers have suggested that reducing the 

granularity of timer stamps would thwart side-channel attacks.

– In Firefox, the precision of performance.now() has been reduced from 

5μs to 20μs.



Summary



• We covered some processor design topics and related them to 

how they enable the Meltdown and Spectre attacks.

• Hopefully, this short zED Talk will enable you to read and 

understand the source articles and commentary on the subject. 

And, most importantly, to see that these threats are real.

• This is all I know so I can only accept questions on what I 

meant by something I put on one of the charts. I will not 

speculate (pun intended).

• Thanks to Peter Enrico and Scott Chapman of Enterprise 

Performance Strategies (EPS) for providing reference 

materials and insight into these issues.

Thank you for your attention.

Summary

24



Partial Bibiography

• Lipp, Moritz et al., Meltdown

– https://arxiv.org/pdf/1801.01207.pdf

• Kocher, Paul et al., Spectre Attacks: Exploiting Speculative Execution

– https://arxiv.org/pdf/1801.01203.pdf

• Heffner, Mike, Visualizing Meltdown on AWS (a blog post)

– https://blog.appoptics.com/visualizing-meltdown-aws/

• Horn, Jan (Project Zero), Reading privileged memory with a side-channel 

– https://googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html

• Cheng, Roger, Lowering JavaScript Timer Resolution Thwarts Meltdown 

and Spectre (a blog post)

– https://hackaday.com/2018/01/06/lowering-javascript-timer-resolution-

thwarts-meltdown-and-spectre/

• XSA-254 - Xen Security Advisory

– http://xenbits.xen.org/xsa/advisory-254.html

https://arxiv.org/pdf/1801.01207.pdf
https://arxiv.org/pdf/1801.01203.pdf
https://blog.appoptics.com/visualizing-meltdown-aws/
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://hackaday.com/2018/01/06/lowering-javascript-timer-resolution-thwarts-meltdown-and-spectre/
http://xenbits.xen.org/xsa/advisory-254.html

