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Z/OS  BASIC MEMORY                                                                                                      
MANAGEMENT CONCEPTS 



z/OS Memory Types 
•  There are three z/OS memory types used to process 

system and user/application storage requests:  
– Real frames: the physical main memory. 
– Auxiliary: paging dataset slots and storage-class memory (SCM) 

blocks. 
– Virtual pages: created through dynamic address translation (DAT) 

for multiple address spaces. 
 
(This presentation uses the traditional term “storage” and more common term “memory” interchangeably.)  
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Virtual Memory 
•  Pages of data in virtual 

is backed by real or 
auxiliary storage. 

•  Contiguous in virtual are 
typically not contiguous 
when backed. 

•  In some cases a page 
can be backed both in 
real and aux. 

•  DAT tables translate 
virtual addresses to real 
addresses. 
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The Memory Managers 
 •  The Virtual Storage Manager (VSM)  

– Receives the requests to obtain and release virtual storage. 
– Keeps track of the allocated and free virtual areas for the different 

types of storage below the 2G bar.  
•  The Real Storage Manager (RSM)  

– Backs the virtual storage pages with real storage frames. 
– Keeps track of the various frames needed for the different areas of 

virtual storage. 
– Manages 64-bit “above the bar” virtual. 

•  The Auxiliary Storage Manager (ASM) 
– Reads and writes pages to/from auxiliary storage. 



Virtual/Real Sizes 
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Full Virtual Memory Map  
•  Three addressing ranges:  

– 64-bit: 2G-16EB  “Above the Bar” 
– 31-bit: 16MB-2G  “Above the Line” 
– 24-bit: 0-16MB  “Below the Line” 

•  Each has both private and 
common areas. 

(Not to scale) 



Common, Private, Shared 
•  Private storage is unique 

to each address space. 
•  Common storage is 

global to every address 
space. 

•  Share storage access 
can be granted to 
multiple address spaces. 

•  The Prefix Save Area 
(PSA) is a special area 
unique to each 
processor. 
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Memory Attributes 
•  Viewability: Private, Common, Shared. 
•  Type: 

–  Pageable – Default for most cases. Can be backed in real or auxiliary. 
–  Fixed – Use if doing I/O, running in a FLIH, or obtaining real address. 
–  DREF – Use if disabled but don’t need fixed. 

•  Residency:  
–  Virtual: Controlled by first part of LOC option on STORAGE OBTAIN for 24 and 31 bit 

virtual. E.g. LOC=(31,xx). 
•  IARV64/IARST64/IARCP64 are always 64-bit virtual. 

–  Real: Controlled by second part to LOC option, e.g. LOC=(xx,64). 
•  Only enforced if fixed. 
•  LOC=(31,64) should be used by most applications. 
•  64-bit services (IARV64 et al) use 64-bit real backing. 

•  Ownership: Task, Address Space, System. 
•  Others: Key, Fetch Protection, Executable, and more. 



Virtual Above and Below “The Bar” 
•  Below 2G: 

– Storage requests by using the following services: 
•  Getmain/Freemain, Storage Obtain/Release, CPOOL (cell pool). 
•  Allocate in 8 byte increments. 

•  Above 2G: 
– Storage requests by using the following services: 

•  IARV64 (GETSTOR/GETCOMMON/GETSHARED), IARCP64 (cell pool), 
IARST64. 

•  IARV64 allocates in 1MB increments. Use IARST64 and IARCP64 to 
obtain smaller increments. 



VSM: VIRTUAL STORAGE MANAGER 



z/OS Memory Managers: VSM 
•  Virtual Storage Manager 
•  Address Space-centric view of the system and processes. 
•  Objectives: 

– Control the allocation/deallocation of 31-bit virtual storage 
addresses. 

– Efficiency – minimum overhead per request. 
•  Associate a storage protection key with each virtual storage 

block requested. 
•  Maintain storage use information by generating SMF 

records. 



VSM Services 
VSM: 
•  GETMAIN – Allocate 31-bit virtual. 
•  FREEMAIN – Free 31-bit virtual. 
•  STORAGE – Newer service to allocate/free 31-bit virtual. 
•  CPOOL – 31-bit cell pool service. 



31-Bit Address Space Memory Map 
 
•  31-bit (below the bar) 

virtual is managed by 
VSM. 

•  Sizes of CSA, ECSA, 
SQA, ESQA are specified 
via IEASYSxx parmlib 
member. 



VSM Storage Management Rules 
•  z/OS manages 31-bit virtual storage through the use of 

subpools designed to accommodate a variety of storage needs. 
•  Storage is allocated or assigned to a subpool in one page (4K) 

multiples. 
•  Storage belonging to different subpools cannot occupy the 

same page. 
•  Storage with different storage keys cannot occupy the same 

page. 
•  Storage belonging to different TCBs cannot occupy the same 

page. 



Private Subpool Attributes 
•  Subpool numbers: 0 – 255 
•  Storage protection: Keys 0 – 15 
•  User Region (AKA Low Private): 

–  Subpools 0 – 132, 250 – 252 
–  TCB-related 
–  Keyed storage 
–  Unauthorized 
–  General purpose subpools 

•  High Private: 
–  Subpools 229, 230, 249 
–  TCB-related 
–  Keyed storage 
–  Authorized 
–  Special authorization application storage needs 

•  ELSQA/LSQA: 
–  Subpool 255 (mainly) 
–  Fixed, key 0 storage 
–  Address space-related, not TCB-related 

 
See MVS Diagnosis: Reference, Chapter 9, for additional subpool information 



Virtual Storage Areas: Common 
•  Common (Global) Storage 
•  Shared by all address spaces  

–  Contents of a particular virtual address is the same for all address spaces. 
–  Accessible using the DAT tables for any address space. 

•  Different (separate) areas of common storage. 
–  Prefixed Save Area (PSA) – Maps fixed hardware and software locations for the related processor 
–  Common Service Area (CSA) 

•  Pageable and fixed data areas  
•  Some load to global modules 

–  Link Pack Area (LPA) 
•  Pageable Link Pack Area (PLPA) 

–  Built at IPL time from libraries specified in LPALSTxx or PROGxx. 
–  Contains SVC routines, access methods, and other read-only system programs, some select read-only re-enterable user programs that an be shared 

among users of the system,  some frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules. 
•  Modified Link Pack Area (MLPA) 

–  Built at IPL time as specified in IEALPAxx. 
–  System Queue Area (SQA) 

•  Contains tables and queues relating to the entire system 
•  When not enough SQA storage available, storage may be taken from CSA 

–  Nucleus (NUC) 
•  Built at IPL time 
•  Read-only nuc, Read-write nuc  



Virtual Storage Areas: Private 
•  Private (Local) Storage 
•  Not shared across address spaces (each address space has its own) 

–  Content of a particular virtual address not same in another address space 
•  Different (separate) areas within the private area 

•  System Region 
–  GETMAINs for tasks running under RCT 

•  ‘Low-end’ of private area 
–  User Region 

•  ‘High-end’ of private area 
–  Local System Queue Area (LSQA) 
–  Area for system tables and queues  
–   associated with the users address space   
–  Scheduler Work Area (SWA) – Contains control blocks for Initiator/Scheduler  
–  Subpools 229 and 230 
–  Storage obtained in requestor’s storage protect key 
–  Used for control blocks only obtained by auth programs with appropriate key 



Storage Key Protection 
•  Storage keys ensure only 

programs with the right 
permissions have access to 
storage. 

•  If a program attempts to 
access a page in the wrong 
key an ABEND results. 
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Storage Key Details 
•  Pages have a storage key and fetch protect status. 
•  Programs run in a PSW key. 
•  Programs can only read and write to pages that have a storage 

key matching their PSW key, with the following exceptions: 
– Programs running with PSW key 0 can read and write to any key. 
– All programs can read and write key 9 storage. 
– All programs can read any storage that is not fetch protected. 

•  System keys are 0-7. 
•  User keys 8-15. 



Changing Keys 
•  In addition to PSW key, each program has a PSW key 

mask (PKM) in control register 3. 
– This is initially set to match the programs PSW-key but can be 

changed on attach or PC routines. 
•  Programs can only change to a key defined by their PKM. 
•  Additionally authorized programs (key 0-7, supervisor state, 

or APF authorized) can change to any key. 
•  A program must be Supervisor State and Key 0 to change 

the storage key of a page. 



EXECUTABLE=NO 
•  Exploiting of z14’s Instruction Execution Protection. 
•  New keyword EXECUTABLE. 
•  Specify on STORAGE OBTAIN & RELEASE (and IARV64). 
•  EXECUTABLE=YES is default and matches old behavior. 
•  EXECUTABLE=NO indicates it will not be executed. 

– ABEND0C4-4 will result if execution is attempted. 
•  Helps prevent security exposures that rely on injecting 

executable code into data buffers. 
– Best to use EXECUTABLE=NO if you know its not executable. 

•  Supported for non-LSQA private subpools. 



VSM DIAGXX AND HEALTH CHECKS 



VSM DIAGxx Statements 
•  VSM TRACE … – Enable GETMAIN, FREEMAIN, STORAGE (GFS) 

trace. 
–  Many options for filtering. 

•  VSM TRACK … – Enable the Common Storage Tracker. 
•  VSM CHECKREGIONLOSS(256K,10M) – Provides way to recycle 

initiators when their storage becomes fragmented. 
•  ALLOWUSERKEYCSA(NO|YES) – YES allows user-key CSA. Default 

and recommendation is NO. 
–  v2.3 is last release to support YES. 

•  VSM BESTFITCSA(NO|YES) – YES may avoid CSA fragmentation. 
NO is default. 

•  TRAPS … -- Various other diagnostic functions (mostly 
undocumented). 



Common Storage Tracker 
•  Tracks owners of currently obtained SQA/ESQA and CSA/

ECSA storage. 
– Address and length of storage. 
– ASID, jobname, and PSW address of owner. 
– Time and date of GETMAIN. 

•  Activated via DIAGxx parmlib member 
– Can be activated/deactivated at any time. 
– DIAGxx: VSM TRACK CSA(ON) SQA(ON) 
– Set DIAG=XX 



Viewing Tracker Data 
•  VERBX VSMDATA 'OWNCOMM DETAIL'  
•  Formats a detailed report of common storage usage. 

ASID Job Name Id       St T Address  Length   Ret Addr MM/DD/YYYY HH:MM:SS CAUB     GQE        
---- -------- -------- -- - -------- -------- -------- ---------- -------- -------- --------   
0028 IBMUSER  TSU00016 Ac C 00B44400 00000088 23FCC9D6 09/12/2005 16:45:45 0241FEB0 01DDD6A0    
 Data ------> 23FAF2D8 23DB5D80 E3606000 00000088  *..2Q..).T--....h*                            
                                                                                               
0028 IBMUSER  TSU00016 Ac S 00FC5018 00000030 00CA5024 09/12/2005 16:45:45 0241FEB0 01E35AF0    
 Data ------> 00000000 00000000 00F97B80 00000028  *.........9#.....*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 00FC5048 00000030 00CA5024 09/12/2005 16:45:45 0241FEB0 01E35148    
 Data ------> 00000000 00000000 00F97B80 00000028  *.........9#.....*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 022E7A28 00000018 039E5364 09/12/2005 16:45:57 0241FEB0 01E43C88    
 Data ------> E2E8E2F1 40404040 00000000 00000000  *SYS1    ........*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 02313068 00000080 23F3D918 09/12/2005 16:45:58 0241FEB0 01E35C40    
 Data ------> D1E2C1C2 00000000 00000080 01000001  *JSAB............*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 02546000 00000060 00D3D1AE 09/12/2005 16:45:58 0241FEB0 01E35C70    
 Data ------> E2E3D8C5 F500005C 00000000 00000000  *STQE5..*........*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 025C1578 00000048 2466F036 09/12/2005 16:45:57 0241FEB0 01E35BC8    
 Data ------> D3D4C1C2 00000000 7FF4EF60 7FF4EF60  *LMAB...."4.-"4.-*  



VSM Health Checks 
•  VSM_CSA_CHANGE – Warn if CSA size is different this IPL. 
•  VSM_CSA_THRESHOLD – Warn if CSA is getting full. 
•  VSM_SQA_LIMIT – Warn if SQA size is too small. 
•  VSM_PVT_LIMIT – Warn if private area is too small. 
•  VSM_CSA_LIMIT – Warn if CSA size is too small. 
•  VSM_SQA_THRESHOLD – Warn if SQA is getting too full. 

– Note that some installation normally overflow SQA into CSA. 
•  VSM_ALLOWUSERKEYCSA – Warns if using insecure “YES” 

option. 
•  VSM_CSA_LARGEST_FREE – Warns if CSA is becoming 

fragmented. 



RSM AND LARGE PAGES 



Large Pages: What Are They? 
4K Pages: 
•  Page table points to 4K frames. 
•  Uses up to 256 TLB entries per 

segment. 

1M Pages: 
•  No page table. 
•  Segment table points to 1M 

frames. 
•  Uses only one TLB entry per 

segment. 
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Importance of Exploiting Large Pages 
•  Problem: Performance degradation due to increased TLB 

(Translation Lookaside Buffer) misses. 
– Over the past years application memory sizes have dramatically 

increased due to support for 64-bit addressing in both physical and 
virtual memory. 

– TLB sizes have remained relatively small due to low access time 
requirements and hardware space limitations. 

– Therefore TLB coverage today represents a much smaller fraction of 
an applications working set size leading to a larger number of TLB 
misses. 

– Applications can suffer a significant performance penalty resulting from 
an increased number of TLB misses as well as the increased cost of 
each TLB miss. 



Importance of Exploiting Large Pages 
•  Benefits: Increase TLB coverage without proportionally 

enlarging the TLB size by using large pages: 
–  Large pages will provide exploiters with better TLB coverage, and 

therefore better performance by decreasing the number of TLB misses 
that an application incurs. 

–  Less time spent converting virtual addresses into physical addresses. 
–  Less page faults as whole 1MB is backed at once instead of for each 

4k page. 
– A large page is a memory page larger than an ordinary 4K base page. 

z/OS supports the following 2 large page sizes: 
–  1MB. 
–  2GB. 



Key Exploiters of Large Pages 
•  Db2:  

–  1M (V10) and 2G (V11) page frame size for PGFIX(YES) pools. 
–  FRAMESIZE parameter in Db2 11. 
–  IBM evaluation shows: 

•  1-3% improvement from 4K frames to 1M frames (zEC12). 
•  1-3% improvement from 1M frames to 2G frames (z13). 

•  Java™: 
–  Pageable 1MB is default as of Java 7. 
–  Use option -Xlp to control the page size such as to use 2GB pages. 
–  WAS Day Trader benchmarks showed up to an 8% performance 

improvement. 
•  z/OS itself uses large pages in many places when they are available. 



Large Pages in 31-bit Virtual 
•  The most significant benefit of large pages comes from 

applications that use vast amounts of data (e.g. 64-bit). 
–  31-bit applications can gain benefits as well if they frequently touch 

many pages together. 
•  31-bit private via STORAGE OBTAIN and CPOOL: 

–  LOC=(31|EXPLICIT,PAGEFRAMESIZE1MB). 
–  Indicates to back pages in 64-bit real and prefer 1MB frames. 
– Only 0-127, 129-132, 240, 244 or 250-252 (Private low, pageable). 

•  Data spaces via DSPSERV: 
– PAGEFRAMESIZE=1M on CREATE (changes default to BACK=64). 
– BLOCKS does not need to be multiple of 256. 



Large Frame Areas (Pre-v2.3) 

•  1MB LFAREA - Large Frame Area 
–  Fixed storage each frame is 1MB   
–  Defined by LFAREA (1M= ) (IEASYSxx) 
–  Included in Available Frame Count when INCLUDE1MAFC=YES 

•  PLAREA – Pageable Large Area  
–  Pageable storage each frame is 1MB. 
–  System defined size approximately (online storage at IPL time)/8 if enough storage is left 

above 2G after LFAREA and Quad Area are defined. 
–  Allocated on SCM capable machines. 
–  Can overflow in the LFAREA. 

•  2GB LFAREA Large Frame Area 
–  Fixed storage each frame is 2GB 
–  Defined by LFAREA (2G =) (IEASYSxx) 
–  Not included in Available Frame Count – used only for 2G requests 
–  Reserved for specific 2GB memory objects 



Large Frame Areas in z/OS v2.3 
•  1MB LFAREA - Large Frame Area 

– No longer physical range. 
– Managed dynamically in non-reconfigurable memory above 2G bar. 
– Capped by LFAREA (1M= ) (IEASYSxx) 
–  INCLUDE1MAFC=NO is ignored. 

•  PLAREA – Pageable Large Area  
– No longer physical range. 
– Managed dynamically in non-reconfigurable memory above 2G bar. 
– No cap. 

•  2GB LFAREA Large Frame Area 
– Unchanged in v2.3. 



Sizing LFAREA for Fixed 1MB 
•  Calculate how much you will need for Db2 buffer pools, JVM Heaps, 

etc. 
•  Best to add additional memory corresponding to the specified LFAREA 

size to existing system memory. 
•  Have enough 4K frames to handle your 4K workload needs (both 

pageable and fixed). 
–  Have enough 4K frames above the bar to avoid RSM breaking down free 1M 

frames and paging or page movement for 4K page Fixes 
•  Include RSM needs for memory mapping - 1/64 total online real at IPL (4g for 256G 

system) 
•  System address space memory usage. 
•  Include enough spare 4K frames for taking dumps quickly. 

•  Doc APAR OA34024 gives some guidance on how to size the 
LFAREA. 



Sizing LFAREA for Pageable 1M (Pre-v2.3) 

•  Pageable Large Pages overflow into the LFAREA when PLAREA is 
depleted. 

•  If you want to ensure your system has enough Pageable Large Pages 
specify additional memory for the LFAREA to also accommodate Pageable 
Large Pages. 

•  The following z/OS System Console command D VS,LFAREA can be used 
to display LFAREA usage by 1MB fixed, 4K, and 1MB pageable large pages. 



Right-Sizing the LFAREA 
RMF Monitor III - STORF 

Note:  all system address 
space large page usage. 

Monitor and adjust LFAREA 
parms based on workload. 

Pre-v2.3, track Pagable large 
overflow into LFAREA. 
Average number of 1 MB 
frames in the LFAREA that were 
used to satisfy 1 MB pageable 
page request. 

*** Ensure LFArea setting is not reducing the 4K fixed pages needed for the workload 
     Review 4K frame demand from RMF STORF report during peak intervals 



z/OS v2.3 Large Page Display 
F AXR,IAXDMEM 
IAR049I DISPLAY MEMORY V1.0                  
PAGEABLE 1M STATISTICS                       
 4824.0MB : TOTAL SIZE                       
 4585.0MB : AVAILABLE FOR PAGEABLE 1M PAGES  
    3.0MB : IN-USE FOR PAGEABLE 1M PAGES     
    3.0MB : MAX IN-USE FOR PAGEABLE 1M PAGES 
    1.0MB : FIXED PAGEABLE 1M FRAMES         
LFAREA 1M STATISTICS - SOURCE = IEASYS23     
   64.0MB : TOTAL SIZE                       
   62.0MB : AVAILABLE FOR FIXED 1M PAGES     
    2.0MB : IN-USE FOR FIXED 1M PAGES        
    2.0MB : MAX IN-USE FOR FIXED 1M PAGES    
LFAREA 2G STATISTICS - SOURCE = IEASYS23     
    0.0MB : TOTAL SIZE = 0                   
    0.0MB : AVAILABLE FOR 2G PAGES = 0       
    0.0MB : IN-USE FOR 2G PAGES = 0          
    0.0MB : MAX IN-USE FOR 2G PAGES = 0  

•  New display in v2.3 with large 
page statistics. 

•  Pageable 1MB stats including 
number of 1M still available. If 
often low, consider adding 
memory. 

•  LFAREA 1M stats including 
total size (cap).  

•  LFAREA 2G stats. 



Other Performance Techniques 
•  Large pages have great benefits but there are many other ways to gain 

performance. 
•  Applications: 

–  Avoid frequent obtaining and freeing storage.  
•  Use cell pools or pre-allocated storage on common paths instead of GETMAIN each time. 

–  Buffer data instead of a second I/O or long calculation. 
–  Multi-threaded applications should consider cache alignment of frequently used 

fields. 
•  Keep frequent updates in separate cache lines from unrelated frequent reads. 

•  Installations: 
–  Ensure plenty of memory is available. 

•  Avoid all paging if performance is a premium. 
–  Use storage-class memory (SCM) such as Flash Express or Virtual Flash Memory 

(VFM). 
And much more… performance and tuning is a vast topic barely touched on here. 



Questions? 



BACKUP 



Virtual Storage Areas: Common 
•  Common (Global) Storage 
•  Shared by all address spaces  

–  Contents of a particular virtual address is the same for all address spaces. 
–  Accessible using the DAT tables for any address space. 

•  Different (separate) areas of common storage. 
–  Prefixed Save Area (PSA) – Maps fixed hardware and software locations for the related processor 
–  Common Service Area (CSA) 

•  Pageable and fixed data areas  
•  Some load to global modules 

–  Link Pack Area (LPA) 
•  Pageable Link Pack Area (PLPA) 

–  Built at IPL time from libraries specified in LPALSTxx or PROGxx. 
–  Contains SVC routines, access methods, and other read-only system programs, some select read-only re-enterable user programs that an be shared among users of the 

system,  some frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules. 
•  Fixed Link Pack Area (FLPA) 

–  Built at IPL time as specified in IEAFIXxx. 
•  Modified Link Pack Area (MLPA) 

–  Built at IPL time as specified in IEALPAxx. 
–  System Queue Area (SQA) 

•  Contains tables and queues relating to the entire system 
•  When not enough SQA storage available, storage may be taken from CSA 

–  Nucleus (NUC) 
•  Built at IPL time 
•  Read-only nuc, Read-write nuc  



Virtual Storage Areas: Private 
•  Private (Local) Storage 
•  Not shared across address spaces (each address space has its own) 

–  Content of a particular virtual address not same in another address space 
•  Accessible only using the DAT tables from that address space 
•  Different (separate) areas within the private area 

•  System Region 
–  GETMAINs for tasks running under RCT 

•  ‘Low-end’ of private area 
–  User Region 

•  ‘High-end’ of private area 
–  Local System Queue Area (LSQA) 
–  Area for system tables and queues  
–   associated with the users address space   
–  Scheduler Work Area (SWA) – Contains control blocks for Initiator/Scheduler  
–  Subpools 229 and 230 
–  Storage obtained in requestor’s storage protect key 
–  Used for control blocks only obtained by auth programs with appropriate key 



Storage Key Protection 
•  Storage keys ensure only 

programs with the right 
permissions have access to 
storage. 

•  If a program attempts to 
access a page in the wrong 
key an ABEND results. 

Key 5 
Storage 

Key 5 
Program 

Key 8 
Storage Key 8 

Program 

x 
x 

✔ 

✔ 



Storage Key Details 
•  Pages have a storage key and fetch protect status. 
•  Programs run in a PSW key. 
•  Programs can only read and write to pages that have a storage 

key matching their PSW key, with the following exceptions: 
– Programs running with PSW key 0 can read and write to any key. 
– All programs can read and write key 9 storage. 
– All programs can read any storage that is not fetch protected. 

•  System keys are 0-7. 
•  User keys 8-15. 



Changing Keys 
•  In addition to PSW key, each program has a PSW key 

mask (PKM) in control register 3. 
– This is initially set to match the programs PSW-key but can be 

changed on attach or PC routines. 
•  Programs can only change to a key defined by their PKM. 
•  Additionally authorized programs (key 0-7, supervisor state, 

or APF authorized) can change to any key. 
•  A program must be Supervisor State and Key 0 to change 

the storage key of a page. 



DIAGxx TRAPS for 64-bit 
•  IarCp64InitGet – Put non-zero into cells on get for test. 
•  IarCp64InitFree – Put non-zero into cells on free for test. 
•  IarCp64Trailer – Always use cell trailer to detect overflow. 
•  IarSt64InitGet – Put non-zero into storage on get for test. 
•  IarSt64InitFree – Put non-zero into storage on free for test. 
•  IarSt64Trailer – Always use storage trailer to detect 

overflow. 


