
z/OS Virtual Memory 
Session Number: 24662 

March 13th, 2019 
 

Elpida Tzortzatos 
Distinguished Engineer 

z/OS Core Design and Analytics Lead for IBM Z 
elpida@us.ibm.com 

1 



Agenda 
•  Memory Management Basics 
•  VSM Overview 
•  VSM DIAGxx Options 
•  VSM Health Checks 
•  Large Pages and Their Value 
 



Z/OS  BASIC MEMORY                                                                                                      
MANAGEMENT CONCEPTS 



z/OS Memory Types 
•  There are three z/OS memory types used to process 

system and user/application storage requests:  
– Real frames: the physical main memory. 
– Auxiliary: paging dataset slots and storage-class memory (SCM) 

blocks. 
– Virtual pages: created through dynamic address translation (DAT) 

for multiple address spaces. 
 
(This presentation uses the traditional term “storage” and more common term “memory” interchangeably.)  

      



Processor Storage Overview 

Main Memory 

Processor Cache 

Storage-Class 
Memory 

Paging Datasets 

Auxiliary Storage 

Real Storage 

On the box 

External 

In
cr

ea
si

ng
 C

ap
ac

ity
 

In
cr

ea
si

ng
 S

pe
ed

 



Virtual Memory 
•  Pages of data in virtual 

is backed by real or 
auxiliary storage. 

•  Contiguous in virtual are 
typically not contiguous 
when backed. 

•  In some cases a page 
can be backed both in 
real and aux. 

•  DAT tables translate 
virtual addresses to real 
addresses. 

Real Memory Auxiliary Memory Virtual Memory 

A 

B 

C 

D 

E 

F 
A B C 

D E F 

B 



The Memory Managers 
 •  The Virtual Storage Manager (VSM)  

– Receives the requests to obtain and release virtual storage. 
– Keeps track of the allocated and free virtual areas for the different 

types of storage below the 2G bar.  
•  The Real Storage Manager (RSM)  

– Backs the virtual storage pages with real storage frames. 
– Keeps track of the various frames needed for the different areas of 

virtual storage. 
– Manages 64-bit “above the bar” virtual. 

•  The Auxiliary Storage Manager (ASM) 
– Reads and writes pages to/from auxiliary storage. 



Virtual/Real Sizes 
64 bit 

addressable 

Current maximum 
real storage 

supported by z/OS 

 Low memory address: 0 

“The Line” 16 MB 

4 TB 

“The Bar” 2 GB 

Theoretical Max 16 EB (2**64) 

31 bit addressable 

24 bit addressable 

(Not to scale) 



Full Virtual Memory Map  
•  Three addressing ranges:  

– 64-bit: 2G-16EB  “Above the Bar” 
– 31-bit: 16MB-2G  “Above the Line” 
– 24-bit: 0-16MB  “Below the Line” 

•  Each has both private and 
common areas. 

(Not to scale) 



Common, Private, Shared 
•  Private storage is unique 

to each address space. 
•  Common storage is 

global to every address 
space. 

•  Share storage access 
can be granted to 
multiple address spaces. 

•  The Prefix Save Area 
(PSA) is a special area 
unique to each 
processor. 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

  
 
 
 
 
 
 

User Private 

User Private 
Data 

Common 
System and application data 

User Private 

 
 

User Private 
Data 

 
 
 

Shared 
System and application data 

Common 
 

The Bar 

The 
Line 

User Private 
Application modules and data 

User Private 
Application modules and data 

Common 
System nucleus and data, 

Application/middleware 
modules and data 

 

PSA 
PSA 

... 



Memory Attributes 
•  Viewability: Private, Common, Shared. 
•  Type: 

–  Pageable – Default for most cases. Can be backed in real or auxiliary. 
–  Fixed – Use if doing I/O, running in a FLIH, or obtaining real address. 
–  DREF – Use if disabled but don’t need fixed. 

•  Residency:  
–  Virtual: Controlled by first part of LOC option on STORAGE OBTAIN for 24 and 31 bit 

virtual. E.g. LOC=(31,xx). 
•  IARV64/IARST64/IARCP64 are always 64-bit virtual. 

–  Real: Controlled by second part to LOC option, e.g. LOC=(xx,64). 
•  Only enforced if fixed. 
•  LOC=(31,64) should be used by most applications. 
•  64-bit services (IARV64 et al) use 64-bit real backing. 

•  Ownership: Task, Address Space, System. 
•  Others: Key, Fetch Protection, Executable, and more. 



Virtual Above and Below “The Bar” 
•  Below 2G: 

– Storage requests by using the following services: 
•  Getmain/Freemain, Storage Obtain/Release, CPOOL (cell pool). 
•  Allocate in 8 byte increments. 

•  Above 2G: 
– Storage requests by using the following services: 

•  IARV64 (GETSTOR/GETCOMMON/GETSHARED), IARCP64 (cell pool), 
IARST64. 

•  IARV64 allocates in 1MB increments. Use IARST64 and IARCP64 to 
obtain smaller increments. 



VSM: VIRTUAL STORAGE MANAGER 



z/OS Memory Managers: VSM 
•  Virtual Storage Manager 
•  Address Space-centric view of the system and processes. 
•  Objectives: 

– Control the allocation/deallocation of 31-bit virtual storage 
addresses. 

– Efficiency – minimum overhead per request. 
•  Associate a storage protection key with each virtual storage 

block requested. 
•  Maintain storage use information by generating SMF 

records. 



VSM Services 
VSM: 
•  GETMAIN – Allocate 31-bit virtual. 
•  FREEMAIN – Free 31-bit virtual. 
•  STORAGE – Newer service to allocate/free 31-bit virtual. 
•  CPOOL – 31-bit cell pool service. 



31-Bit Address Space Memory Map 
 
•  31-bit (below the bar) 

virtual is managed by 
VSM. 

•  Sizes of CSA, ECSA, 
SQA, ESQA are specified 
via IEASYSxx parmlib 
member. 



VSM Storage Management Rules 
•  z/OS manages 31-bit virtual storage through the use of 

subpools designed to accommodate a variety of storage needs. 
•  Storage is allocated or assigned to a subpool in one page (4K) 

multiples. 
•  Storage belonging to different subpools cannot occupy the 

same page. 
•  Storage with different storage keys cannot occupy the same 

page. 
•  Storage belonging to different TCBs cannot occupy the same 

page. 



Private Subpool Attributes 
•  Subpool numbers: 0 – 255 
•  Storage protection: Keys 0 – 15 
•  User Region (AKA Low Private): 

–  Subpools 0 – 132, 250 – 252 
–  TCB-related 
–  Keyed storage 
–  Unauthorized 
–  General purpose subpools 

•  High Private: 
–  Subpools 229, 230, 249 
–  TCB-related 
–  Keyed storage 
–  Authorized 
–  Special authorization application storage needs 

•  ELSQA/LSQA: 
–  Subpool 255 (mainly) 
–  Fixed, key 0 storage 
–  Address space-related, not TCB-related 

 
See MVS Diagnosis: Reference, Chapter 9, for additional subpool information 



Virtual Storage Areas: Common 
•  Common (Global) Storage 
•  Shared by all address spaces  

–  Contents of a particular virtual address is the same for all address spaces. 
–  Accessible using the DAT tables for any address space. 

•  Different (separate) areas of common storage. 
–  Prefixed Save Area (PSA) – Maps fixed hardware and software locations for the related processor 
–  Common Service Area (CSA) 

•  Pageable and fixed data areas  
•  Some load to global modules 

–  Link Pack Area (LPA) 
•  Pageable Link Pack Area (PLPA) 

–  Built at IPL time from libraries specified in LPALSTxx or PROGxx. 
–  Contains SVC routines, access methods, and other read-only system programs, some select read-only re-enterable user programs that an be shared 

among users of the system,  some frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules. 
•  Modified Link Pack Area (MLPA) 

–  Built at IPL time as specified in IEALPAxx. 
–  System Queue Area (SQA) 

•  Contains tables and queues relating to the entire system 
•  When not enough SQA storage available, storage may be taken from CSA 

–  Nucleus (NUC) 
•  Built at IPL time 
•  Read-only nuc, Read-write nuc  



Virtual Storage Areas: Private 
•  Private (Local) Storage 
•  Not shared across address spaces (each address space has its own) 

–  Content of a particular virtual address not same in another address space 
•  Different (separate) areas within the private area 

•  System Region 
–  GETMAINs for tasks running under RCT 

•  ‘Low-end’ of private area 
–  User Region 

•  ‘High-end’ of private area 
–  Local System Queue Area (LSQA) 
–  Area for system tables and queues  
–   associated with the users address space   
–  Scheduler Work Area (SWA) – Contains control blocks for Initiator/Scheduler  
–  Subpools 229 and 230 
–  Storage obtained in requestor’s storage protect key 
–  Used for control blocks only obtained by auth programs with appropriate key 



Storage Key Protection 
•  Storage keys ensure only 

programs with the right 
permissions have access to 
storage. 

•  If a program attempts to 
access a page in the wrong 
key an ABEND results. 

Key 5 
Storage 

Key 5 
Program 

Key 8 
Storage Key 8 

Program 

x 
x 

✔ 

✔ 



Storage Key Details 
•  Pages have a storage key and fetch protect status. 
•  Programs run in a PSW key. 
•  Programs can only read and write to pages that have a storage 

key matching their PSW key, with the following exceptions: 
– Programs running with PSW key 0 can read and write to any key. 
– All programs can read and write key 9 storage. 
– All programs can read any storage that is not fetch protected. 

•  System keys are 0-7. 
•  User keys 8-15. 



Changing Keys 
•  In addition to PSW key, each program has a PSW key 

mask (PKM) in control register 3. 
– This is initially set to match the programs PSW-key but can be 

changed on attach or PC routines. 
•  Programs can only change to a key defined by their PKM. 
•  Additionally authorized programs (key 0-7, supervisor state, 

or APF authorized) can change to any key. 
•  A program must be Supervisor State and Key 0 to change 

the storage key of a page. 



EXECUTABLE=NO 
•  Exploiting of z14’s Instruction Execution Protection. 
•  New keyword EXECUTABLE. 
•  Specify on STORAGE OBTAIN & RELEASE (and IARV64). 
•  EXECUTABLE=YES is default and matches old behavior. 
•  EXECUTABLE=NO indicates it will not be executed. 

– ABEND0C4-4 will result if execution is attempted. 
•  Helps prevent security exposures that rely on injecting 

executable code into data buffers. 
– Best to use EXECUTABLE=NO if you know its not executable. 

•  Supported for non-LSQA private subpools. 



VSM DIAGXX AND HEALTH CHECKS 



VSM DIAGxx Statements 
•  VSM TRACE … – Enable GETMAIN, FREEMAIN, STORAGE (GFS) 

trace. 
–  Many options for filtering. 

•  VSM TRACK … – Enable the Common Storage Tracker. 
•  VSM CHECKREGIONLOSS(256K,10M) – Provides way to recycle 

initiators when their storage becomes fragmented. 
•  ALLOWUSERKEYCSA(NO|YES) – YES allows user-key CSA. Default 

and recommendation is NO. 
–  v2.3 is last release to support YES. 

•  VSM BESTFITCSA(NO|YES) – YES may avoid CSA fragmentation. 
NO is default. 

•  TRAPS … -- Various other diagnostic functions (mostly 
undocumented). 



Common Storage Tracker 
•  Tracks owners of currently obtained SQA/ESQA and CSA/

ECSA storage. 
– Address and length of storage. 
– ASID, jobname, and PSW address of owner. 
– Time and date of GETMAIN. 

•  Activated via DIAGxx parmlib member 
– Can be activated/deactivated at any time. 
– DIAGxx: VSM TRACK CSA(ON) SQA(ON) 
– Set DIAG=XX 



Viewing Tracker Data 
•  VERBX VSMDATA 'OWNCOMM DETAIL'  
•  Formats a detailed report of common storage usage. 

ASID Job Name Id       St T Address  Length   Ret Addr MM/DD/YYYY HH:MM:SS CAUB     GQE        
---- -------- -------- -- - -------- -------- -------- ---------- -------- -------- --------   
0028 IBMUSER  TSU00016 Ac C 00B44400 00000088 23FCC9D6 09/12/2005 16:45:45 0241FEB0 01DDD6A0    
 Data ------> 23FAF2D8 23DB5D80 E3606000 00000088  *..2Q..).T--....h*                            
                                                                                               
0028 IBMUSER  TSU00016 Ac S 00FC5018 00000030 00CA5024 09/12/2005 16:45:45 0241FEB0 01E35AF0    
 Data ------> 00000000 00000000 00F97B80 00000028  *.........9#.....*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 00FC5048 00000030 00CA5024 09/12/2005 16:45:45 0241FEB0 01E35148    
 Data ------> 00000000 00000000 00F97B80 00000028  *.........9#.....*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 022E7A28 00000018 039E5364 09/12/2005 16:45:57 0241FEB0 01E43C88    
 Data ------> E2E8E2F1 40404040 00000000 00000000  *SYS1    ........*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 02313068 00000080 23F3D918 09/12/2005 16:45:58 0241FEB0 01E35C40    
 Data ------> D1E2C1C2 00000000 00000080 01000001  *JSAB............*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 02546000 00000060 00D3D1AE 09/12/2005 16:45:58 0241FEB0 01E35C70    
 Data ------> E2E3D8C5 F500005C 00000000 00000000  *STQE5..*........*                           
                                                                                                
0028 IBMUSER  TSU00016 Ac S 025C1578 00000048 2466F036 09/12/2005 16:45:57 0241FEB0 01E35BC8    
 Data ------> D3D4C1C2 00000000 7FF4EF60 7FF4EF60  *LMAB...."4.-"4.-*  



VSM Health Checks 
•  VSM_CSA_CHANGE – Warn if CSA size is different this IPL. 
•  VSM_CSA_THRESHOLD – Warn if CSA is getting full. 
•  VSM_SQA_LIMIT – Warn if SQA size is too small. 
•  VSM_PVT_LIMIT – Warn if private area is too small. 
•  VSM_CSA_LIMIT – Warn if CSA size is too small. 
•  VSM_SQA_THRESHOLD – Warn if SQA is getting too full. 

– Note that some installation normally overflow SQA into CSA. 
•  VSM_ALLOWUSERKEYCSA – Warns if using insecure “YES” 

option. 
•  VSM_CSA_LARGEST_FREE – Warns if CSA is becoming 

fragmented. 



RSM AND LARGE PAGES 



Large Pages: What Are They? 
4K Pages: 
•  Page table points to 4K frames. 
•  Uses up to 256 TLB entries per 

segment. 

1M Pages: 
•  No page table. 
•  Segment table points to 1M 

frames. 
•  Uses only one TLB entry per 

segment. 

Region 
Table(s) 

Segment 
Table 

Page 
Table 

4K Data  
Frames 

Region 
Table(s) 

Segment 
Table 

1M Data Frame 



Importance of Exploiting Large Pages 
•  Problem: Performance degradation due to increased TLB 

(Translation Lookaside Buffer) misses. 
– Over the past years application memory sizes have dramatically 

increased due to support for 64-bit addressing in both physical and 
virtual memory. 

– TLB sizes have remained relatively small due to low access time 
requirements and hardware space limitations. 

– Therefore TLB coverage today represents a much smaller fraction of 
an applications working set size leading to a larger number of TLB 
misses. 

– Applications can suffer a significant performance penalty resulting from 
an increased number of TLB misses as well as the increased cost of 
each TLB miss. 



Importance of Exploiting Large Pages 
•  Benefits: Increase TLB coverage without proportionally 

enlarging the TLB size by using large pages: 
–  Large pages will provide exploiters with better TLB coverage, and 

therefore better performance by decreasing the number of TLB misses 
that an application incurs. 

–  Less time spent converting virtual addresses into physical addresses. 
–  Less page faults as whole 1MB is backed at once instead of for each 

4k page. 
– A large page is a memory page larger than an ordinary 4K base page. 

z/OS supports the following 2 large page sizes: 
–  1MB. 
–  2GB. 



Key Exploiters of Large Pages 
•  Db2:  

–  1M (V10) and 2G (V11) page frame size for PGFIX(YES) pools. 
–  FRAMESIZE parameter in Db2 11. 
–  IBM evaluation shows: 

•  1-3% improvement from 4K frames to 1M frames (zEC12). 
•  1-3% improvement from 1M frames to 2G frames (z13). 

•  Java™: 
–  Pageable 1MB is default as of Java 7. 
–  Use option -Xlp to control the page size such as to use 2GB pages. 
–  WAS Day Trader benchmarks showed up to an 8% performance 

improvement. 
•  z/OS itself uses large pages in many places when they are available. 



Large Pages in 31-bit Virtual 
•  The most significant benefit of large pages comes from 

applications that use vast amounts of data (e.g. 64-bit). 
–  31-bit applications can gain benefits as well if they frequently touch 

many pages together. 
•  31-bit private via STORAGE OBTAIN and CPOOL: 

–  LOC=(31|EXPLICIT,PAGEFRAMESIZE1MB). 
–  Indicates to back pages in 64-bit real and prefer 1MB frames. 
– Only 0-127, 129-132, 240, 244 or 250-252 (Private low, pageable). 

•  Data spaces via DSPSERV: 
– PAGEFRAMESIZE=1M on CREATE (changes default to BACK=64). 
– BLOCKS does not need to be multiple of 256. 



Large Frame Areas (Pre-v2.3) 

•  1MB LFAREA - Large Frame Area 
–  Fixed storage each frame is 1MB   
–  Defined by LFAREA (1M= ) (IEASYSxx) 
–  Included in Available Frame Count when INCLUDE1MAFC=YES 

•  PLAREA – Pageable Large Area  
–  Pageable storage each frame is 1MB. 
–  System defined size approximately (online storage at IPL time)/8 if enough storage is left 

above 2G after LFAREA and Quad Area are defined. 
–  Allocated on SCM capable machines. 
–  Can overflow in the LFAREA. 

•  2GB LFAREA Large Frame Area 
–  Fixed storage each frame is 2GB 
–  Defined by LFAREA (2G =) (IEASYSxx) 
–  Not included in Available Frame Count – used only for 2G requests 
–  Reserved for specific 2GB memory objects 



Large Frame Areas in z/OS v2.3 
•  1MB LFAREA - Large Frame Area 

– No longer physical range. 
– Managed dynamically in non-reconfigurable memory above 2G bar. 
– Capped by LFAREA (1M= ) (IEASYSxx) 
–  INCLUDE1MAFC=NO is ignored. 

•  PLAREA – Pageable Large Area  
– No longer physical range. 
– Managed dynamically in non-reconfigurable memory above 2G bar. 
– No cap. 

•  2GB LFAREA Large Frame Area 
– Unchanged in v2.3. 



Sizing LFAREA for Fixed 1MB 
•  Calculate how much you will need for Db2 buffer pools, JVM Heaps, 

etc. 
•  Best to add additional memory corresponding to the specified LFAREA 

size to existing system memory. 
•  Have enough 4K frames to handle your 4K workload needs (both 

pageable and fixed). 
–  Have enough 4K frames above the bar to avoid RSM breaking down free 1M 

frames and paging or page movement for 4K page Fixes 
•  Include RSM needs for memory mapping - 1/64 total online real at IPL (4g for 256G 

system) 
•  System address space memory usage. 
•  Include enough spare 4K frames for taking dumps quickly. 

•  Doc APAR OA34024 gives some guidance on how to size the 
LFAREA. 



Sizing LFAREA for Pageable 1M (Pre-v2.3) 

•  Pageable Large Pages overflow into the LFAREA when PLAREA is 
depleted. 

•  If you want to ensure your system has enough Pageable Large Pages 
specify additional memory for the LFAREA to also accommodate Pageable 
Large Pages. 

•  The following z/OS System Console command D VS,LFAREA can be used 
to display LFAREA usage by 1MB fixed, 4K, and 1MB pageable large pages. 



Right-Sizing the LFAREA 
RMF Monitor III - STORF 

Note:  all system address 
space large page usage. 

Monitor and adjust LFAREA 
parms based on workload. 

Pre-v2.3, track Pagable large 
overflow into LFAREA. 
Average number of 1 MB 
frames in the LFAREA that were 
used to satisfy 1 MB pageable 
page request. 

*** Ensure LFArea setting is not reducing the 4K fixed pages needed for the workload 
     Review 4K frame demand from RMF STORF report during peak intervals 



z/OS v2.3 Large Page Display 
F AXR,IAXDMEM 
IAR049I DISPLAY MEMORY V1.0                  
PAGEABLE 1M STATISTICS                       
 4824.0MB : TOTAL SIZE                       
 4585.0MB : AVAILABLE FOR PAGEABLE 1M PAGES  
    3.0MB : IN-USE FOR PAGEABLE 1M PAGES     
    3.0MB : MAX IN-USE FOR PAGEABLE 1M PAGES 
    1.0MB : FIXED PAGEABLE 1M FRAMES         
LFAREA 1M STATISTICS - SOURCE = IEASYS23     
   64.0MB : TOTAL SIZE                       
   62.0MB : AVAILABLE FOR FIXED 1M PAGES     
    2.0MB : IN-USE FOR FIXED 1M PAGES        
    2.0MB : MAX IN-USE FOR FIXED 1M PAGES    
LFAREA 2G STATISTICS - SOURCE = IEASYS23     
    0.0MB : TOTAL SIZE = 0                   
    0.0MB : AVAILABLE FOR 2G PAGES = 0       
    0.0MB : IN-USE FOR 2G PAGES = 0          
    0.0MB : MAX IN-USE FOR 2G PAGES = 0  

•  New display in v2.3 with large 
page statistics. 

•  Pageable 1MB stats including 
number of 1M still available. If 
often low, consider adding 
memory. 

•  LFAREA 1M stats including 
total size (cap).  

•  LFAREA 2G stats. 



Other Performance Techniques 
•  Large pages have great benefits but there are many other ways to gain 

performance. 
•  Applications: 

–  Avoid frequent obtaining and freeing storage.  
•  Use cell pools or pre-allocated storage on common paths instead of GETMAIN each time. 

–  Buffer data instead of a second I/O or long calculation. 
–  Multi-threaded applications should consider cache alignment of frequently used 

fields. 
•  Keep frequent updates in separate cache lines from unrelated frequent reads. 

•  Installations: 
–  Ensure plenty of memory is available. 

•  Avoid all paging if performance is a premium. 
–  Use storage-class memory (SCM) such as Flash Express or Virtual Flash Memory 

(VFM). 
And much more… performance and tuning is a vast topic barely touched on here. 



Questions? 



BACKUP 



Virtual Storage Areas: Common 
•  Common (Global) Storage 
•  Shared by all address spaces  

–  Contents of a particular virtual address is the same for all address spaces. 
–  Accessible using the DAT tables for any address space. 

•  Different (separate) areas of common storage. 
–  Prefixed Save Area (PSA) – Maps fixed hardware and software locations for the related processor 
–  Common Service Area (CSA) 

•  Pageable and fixed data areas  
•  Some load to global modules 

–  Link Pack Area (LPA) 
•  Pageable Link Pack Area (PLPA) 

–  Built at IPL time from libraries specified in LPALSTxx or PROGxx. 
–  Contains SVC routines, access methods, and other read-only system programs, some select read-only re-enterable user programs that an be shared among users of the 

system,  some frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules. 
•  Fixed Link Pack Area (FLPA) 

–  Built at IPL time as specified in IEAFIXxx. 
•  Modified Link Pack Area (MLPA) 

–  Built at IPL time as specified in IEALPAxx. 
–  System Queue Area (SQA) 

•  Contains tables and queues relating to the entire system 
•  When not enough SQA storage available, storage may be taken from CSA 

–  Nucleus (NUC) 
•  Built at IPL time 
•  Read-only nuc, Read-write nuc  



Virtual Storage Areas: Private 
•  Private (Local) Storage 
•  Not shared across address spaces (each address space has its own) 

–  Content of a particular virtual address not same in another address space 
•  Accessible only using the DAT tables from that address space 
•  Different (separate) areas within the private area 

•  System Region 
–  GETMAINs for tasks running under RCT 

•  ‘Low-end’ of private area 
–  User Region 

•  ‘High-end’ of private area 
–  Local System Queue Area (LSQA) 
–  Area for system tables and queues  
–   associated with the users address space   
–  Scheduler Work Area (SWA) – Contains control blocks for Initiator/Scheduler  
–  Subpools 229 and 230 
–  Storage obtained in requestor’s storage protect key 
–  Used for control blocks only obtained by auth programs with appropriate key 



Storage Key Protection 
•  Storage keys ensure only 

programs with the right 
permissions have access to 
storage. 

•  If a program attempts to 
access a page in the wrong 
key an ABEND results. 

Key 5 
Storage 

Key 5 
Program 

Key 8 
Storage Key 8 

Program 

x 
x 

✔ 

✔ 



Storage Key Details 
•  Pages have a storage key and fetch protect status. 
•  Programs run in a PSW key. 
•  Programs can only read and write to pages that have a storage 

key matching their PSW key, with the following exceptions: 
– Programs running with PSW key 0 can read and write to any key. 
– All programs can read and write key 9 storage. 
– All programs can read any storage that is not fetch protected. 

•  System keys are 0-7. 
•  User keys 8-15. 



Changing Keys 
•  In addition to PSW key, each program has a PSW key 

mask (PKM) in control register 3. 
– This is initially set to match the programs PSW-key but can be 

changed on attach or PC routines. 
•  Programs can only change to a key defined by their PKM. 
•  Additionally authorized programs (key 0-7, supervisor state, 

or APF authorized) can change to any key. 
•  A program must be Supervisor State and Key 0 to change 

the storage key of a page. 



DIAGxx TRAPS for 64-bit 
•  IarCp64InitGet – Put non-zero into cells on get for test. 
•  IarCp64InitFree – Put non-zero into cells on free for test. 
•  IarCp64Trailer – Always use cell trailer to detect overflow. 
•  IarSt64InitGet – Put non-zero into storage on get for test. 
•  IarSt64InitFree – Put non-zero into storage on free for test. 
•  IarSt64Trailer – Always use storage trailer to detect 

overflow. 


